1
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
2
|
Stekic A, Dragic M, Stanojevic J, Zaric Kontic M, Stevanovic I, Zeljkovic Jovanovic M, Mihajlovic K, Nedeljkovic N. Impaired olfactory performance and anxiety-like behavior in a rat model of multiple sclerosis are associated with enhanced adenosine signaling in the olfactory bulb via A 1R, A 2BR, and A 3R. Front Cell Neurosci 2024; 18:1407975. [PMID: 39139401 PMCID: PMC11320153 DOI: 10.3389/fncel.2024.1407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The present study shows that animals with experimental autoimmune encephalomyelitis (EAE) exhibit olfactory dysfunction and impaired general cognitive abilities, as well as anxiety-like behavior. Olfactory dysfunction occurs on average at 2 dpi, well before the onset of the first motor signs of EAE (8-10 dpi). After the initial olfactory dysfunction, the EAE animals show a fluctuation in olfactory performance that resembles the relapsing-remitting course of human MS. The study also shows severe neuroinflammation in the olfactory bulb (OB), with numerous infiltrated CD4+ T cells and peripheral macrophages in the superficial OB layers, marked microgliosis, and massive induction of TNF-α, IL-1β, and IL-6. Reduced tyrosine hydroxylase activity in the glomerular layer, pronounced granule cell atrophy, and reduced numbers of type B neuroblasts in the rostral migratory stream also indicate altered plasticity of the neuronal network in the OB. Considering the exceptionally high purinome expression in the OB, the possible involvement of purinergic signaling was also investigated. The study shows that macrophages infiltrating the OB overexpress A3R, while highly reactive microglia overexpress the adenosine-producing enzyme eN/CD73 as well as A2BR, A3R, and P2X4R. Given the simultaneous induction of complement component C3, the results suggest that the microglial cells develop a functional phenotype of phagocytizing microglia. The study also demonstrates transcriptional and translational upregulation of A1R in mitral and tufted cells, which likely influence resting network activity in OB and likely contribute to olfactory dysfunction in EAE. Overall, our study shows that olfactory dysfunction and altered social and cognitive behavior in EAE are associated with increased adenosine signaling via A1R, A2BR, and A3R.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Vinca Institute of Nuclear Sciences, Institute of National Significance, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Bering T, Gadgaard C, Vorum H, Honoré B, Rath MF. Diurnal proteome profile of the mouse cerebral cortex: Conditional deletion of the Bmal1 circadian clock gene elevates astrocyte protein levels and cell abundance in the neocortex and hippocampus. Glia 2023; 71:2623-2641. [PMID: 37470358 DOI: 10.1002/glia.24443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Gadgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cázares H. Extracellular vesicles in the glioblastoma microenvironment: A diagnostic and therapeutic perspective. Mol Aspects Med 2023; 91:101167. [PMID: 36577547 PMCID: PMC10073317 DOI: 10.1016/j.mam.2022.101167] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.
Collapse
Affiliation(s)
- Marissa N Russo
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Biology Graduate Program, University of North Florida, Jacksonville, FL, USA
| | - Emily S Norton
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA; Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
5
|
Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 2022; 40:517-526. [PMID: 33603203 PMCID: PMC8606190 DOI: 10.1038/s41587-021-00830-w] [Citation(s) in RCA: 389] [Impact Index Per Article: 194.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
Collapse
Affiliation(s)
- Dylan M. Cable
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139,Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142
| | - Luli S. Zou
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215,Department of Biostatistics, Harvard University, Boston, MA, 02115
| | | | - Evan Z. Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge MA 02138
| | - Rafael A. Irizarry
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215,Department of Biostatistics, Harvard University, Boston, MA, 02115
| |
Collapse
|
6
|
Dragic M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic MZ, Mitrović N, Laketa D, Lavrnja I, Kipp M, Grković I, Nedeljkovic N. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro 2022; 14:17590914221102068. [PMID: 35593054 PMCID: PMC9125070 DOI: 10.1177/17590914221102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Mitrović
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Markus Kipp
- Institute for Anatomy Rostock, University Medicine Rostock, Rostock, Germany
| | - Ivana Grković
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Almeida RF, Ferreira TP, David CVC, Abreu E Silva PC, Dos Santos SA, Rodrigues ALS, Elisabetsky E. Guanine-Based Purines as an Innovative Target to Treat Major Depressive Disorder. Front Pharmacol 2021; 12:652130. [PMID: 33927625 PMCID: PMC8076783 DOI: 10.3389/fphar.2021.652130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Roberto F Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.,Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago P Ferreira
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Camila V C David
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Paulo C Abreu E Silva
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sulamita A Dos Santos
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana L S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Purinergic Receptor Blockade with Suramin Increases Survival of Postnatal Neural Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22020713. [PMID: 33445804 PMCID: PMC7828253 DOI: 10.3390/ijms22020713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.
Collapse
|
10
|
Losurdo M, Grilli M. Extracellular Vesicles, Influential Players of Intercellular Communication within Adult Neurogenic Niches. Int J Mol Sci 2020; 21:E8819. [PMID: 33233420 PMCID: PMC7700666 DOI: 10.3390/ijms21228819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, involving the generation of functional neurons from adult neural stem cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone (SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult brain to face the continuously changing external and internal environment and requires coordinated interplay between all cell types within the specialized microenvironment of the neurogenic niche. NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence and self-renewal of NSC, their differentiation programs and the survival and integration of newborn cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication, representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids) by which they modulate the function of the recipient cells. Current knowledge of the physiological role of EVs within adult neurogenic niches is rather limited. In this review, we will summarize and discuss EV-based cross-talk within adult neurogenic niches and postulate how EVs might play a critical role in the regulation of the neurogenic process.
Collapse
Affiliation(s)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
11
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Recabal A, Fernández P, López S, Barahona MJ, Ordenes P, Palma A, Elizondo-Vega R, Farkas C, Uribe A, Caprile T, Sáez JC, García-Robles MA. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J Neurochem 2020; 156:182-199. [PMID: 32936929 PMCID: PMC7894481 DOI: 10.1111/jnc.15188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced β-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased β-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.
Collapse
Affiliation(s)
- Antonia Recabal
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Paola Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | - Sergio López
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - María J Barahona
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Alejandra Palma
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | | | - Carlos Farkas
- Research Institute in Oncology and Hematology, Winnipeg, Manitoba, Canada
| | - Amparo Uribe
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
13
|
Baqi Y, Rashed M, Schäkel L, Malik EM, Pelletier J, Sévigny J, Fiene A, Müller CE. Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3. Front Pharmacol 2020; 11:1282. [PMID: 32973513 PMCID: PMC7481482 DOI: 10.3389/fphar.2020.01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of nucleoside tri- and di-phosphates to mono-phosphates. The products are subsequently hydrolyzed by ecto-5′-nucleotidase (ecto-5′-NT) to nucleosides. NTPDase inhibitors have potential as novel drugs, e.g., for the treatment of inflammation, neurodegenerative diseases, and cancer. In this context, a series of anthraquinone derivatives structurally related to the anthraquinone dye reactive blue-2 (RB-2) was synthesized and evaluated as inhibitors of human NTPDases utilizing a malachite green assay. We identified several potent and selective inhibitors of human NTPDase2 and -3. Among the most potent NTPDase2 inhibitors were 1-amino-4-(9-phenanthrylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (20, PSB-16131, IC50 of 539 nM) and 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (48, PSB-2020, IC50 of 551 nM). The most potent NTPDase3 inhibitors were 1-amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (42, PSB-1011, IC50 of 390 nM) and 1-amino-4-(3-carboxy-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (33, PSB-2046, IC50 of 723 nM). The best NTPDase2 inhibitor 20 showed a non-competitive inhibition type, while the NTPDase3 inhibitor 42 behaved as a mixed-type inhibitor. These potent compounds were found to be selective vs. other NTPDases. They will be useful tools for studying the roles of NTPDase2 and -3 in physiology and under pathological conditions.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Ecto-Nucleotide Triphosphate Diphosphohydrolase-2 (NTPDase2) Deletion Increases Acetaminophen-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21175998. [PMID: 32825435 PMCID: PMC7504458 DOI: 10.3390/ijms21175998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2 null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2 in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic pathways in hepatic periportal and sinusoidal biology as such advances in understanding might provide possible therapeutic targets.
Collapse
|
15
|
Zimmermann H. Comments on Cui Q-Q et al: "Hippocampal CD 39/ENTPD 1 promotes mouse depression-like behavior …". EMBO Rep 2020; 21:e50737. [PMID: 32789954 PMCID: PMC7507361 DOI: 10.15252/embr.202050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Comment on Hippocampal CD 39/ENTPD 1 promotes mouse depression-like behavior through hydrolyzing extracellular ATP by Cui et al.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Abstract
Response to comments on Cui Q-Q et al: "Hippocampal CD 39/ENTPD 1 promotes mouse depression-like behavior through hydrolyzing extracellular ATP".
Collapse
Affiliation(s)
- Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| |
Collapse
|
17
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Dragić M, Zarić M, Mitrović N, Nedeljković N, Grković I. Application of Gray Level Co-Occurrence Matrix Analysis as a New Method for Enzyme Histochemistry Quantification. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:690-698. [PMID: 30714562 DOI: 10.1017/s1431927618016306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzyme histochemistry is a valuable histological method which provides a connection between morphology, activity, and spatial localization of investigated enzymes. Even though the method relies purely on arbitrary evaluations performed by the human eye, it is still wildly accepted and used in histo(patho)logy. Texture analysis emerged as an excellent tool for image quantification of subtle differences reflected in both spatial discrepancies and gray level values of pixels. The current study of texture analysis utilizes the gray-level co-occurrence matrix as a method for quantification of differences between ecto-5'-nucleotidase activities in healthy hippocampal tissue and tissue with marked neurodegeneration. We used the angular second moment, contrast (CON), correlation, inverse difference moment (INV), and entropy for texture analysis and receiver operating characteristic analysis with immunoblot and qualitative assessment of enzyme histochemistry as a validation. Our results strongly argue that co-occurrence matrix analysis could be used for the determination of fine differences in the enzyme activities with the possibility to ascribe those differences to regions or specific cell types. In addition, it emerged that INV and CON are especially useful parameters for this type of enzyme histochemistry analysis. We concluded that texture analysis is a reliable method for quantification of this descriptive technique, thus removing biases and adding it a quantitative dimension.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics,Faculty of Biology,University of Belgrade,Belgrade,Studentski trg 3,11001 Belgrade,Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics,Faculty of Biology,University of Belgrade,Belgrade,Studentski trg 3,11001 Belgrade,Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| |
Collapse
|
19
|
The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signal 2019; 15:225-236. [PMID: 31123897 DOI: 10.1007/s11302-019-09656-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.
Collapse
|
20
|
Takei Y. Age-dependent decline in neurogenesis of the hippocampus and extracellular nucleotides. Hum Cell 2019; 32:88-94. [PMID: 30730038 DOI: 10.1007/s13577-019-00241-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
New neurons are continuously generated in the adult brain. This generation primarily occurs in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. In the SGZ, neural stem cells (NSCs) give rise to glutamatergic granule cells that integrate into the hippocampal circuitry. Reduction of neurogenesis in the hippocampus impairs learning and memory, which suggests that this process is important for adult hippocampal function. Indeed, the neurogenesis is reduced in the progression of aging, which is thought to contribute to age-related cognitive impairment. Although the mechanism of age-dependent decline in neurogenesis remains largely obscure, astrocytes are thought to play a vital role in regulating NSC proliferation and differentiation. Both astrocytes and NSCs secrete nucleotides to the extracellular space and extracellular nucleotides bind to their receptors on the surface of target cells. In this review, the recent knowledge on adult neurogenesis in the hippocampus is summarized briefly, and possible role of extracellular nucleotides in the age-dependent changes of the adult neurogenesis is discussed.
Collapse
Affiliation(s)
- Yoshinori Takei
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, 46-29, Shimo-adachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Soluble and membrane-bound adenylate kinase and nucleotidases augment ATP-mediated inflammation in diabetic retinopathy eyes with vitreous hemorrhage. J Mol Med (Berl) 2019; 97:341-354. [PMID: 30617853 PMCID: PMC6394560 DOI: 10.1007/s00109-018-01734-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Abstract ATP and adenosine are important signaling molecules involved in vascular remodeling, retinal function, and neurovascular coupling in the eye. Current knowledge on enzymatic pathways governing the duration and magnitude of ocular purinergic signaling is incompletely understood. By employing sensitive analytical assays, this study dissected ocular purine homeostasis as a complex and coordinated network. Along with previously characterized ecto-5′-nucleotidase/CD73 and adenylate kinase activities, other enzymes have been identified in vitreous fluids, including nucleoside triphosphate diphosphohydrolase (NTPDase), adenosine deaminase, and alkaline phosphatase. Strikingly, activities of soluble adenylate kinase, adenosine deaminase, ecto-5′-nucleotidase/CD73, and alkaline phosphatase, as well as intravitreal concentrations of ATP and ADP, were concurrently upregulated in patients suffering from diabetic retinopathy (DR) with non-clearing vitreous hemorrhage (VH), when compared to DR eyes without VH and control eyes operated due to macular hole or pucker. Additional histochemical analysis revealed selective distribution of key ecto-nucleotidases (NTPDase1/CD39, NTPDase2, ecto-5′-nucleotidase/CD73, and alkaline phosphatase) in the human sensory neuroretina and optic nerve head, and also in pathological neofibrovascular tissues surgically excised from patients with advanced proliferative DR. Collectively, these data provide evidence for specific hemorrhage-related shifts in purine homeostasis in DR eyes from the generation of anti-inflammatory adenosine towards a pro-inflammatory and pro-angiogenic ATP-regenerating phenotype. In the future, identifying the exact mechanisms by which a broad spectrum of soluble and membrane-bound enzymes coordinately regulates ocular purine levels and the further translation of purine-converting enzymes as potential therapeutic targets in the treatment of proliferative DR and other vitreoretinal diseases will be an area of intense interest. Key messages NTPDase, alkaline phosphatase, and adenosine deaminase circulate in human vitreous. Purinergic enzymes are up-regulated in diabetic eyes with vitreous hemorrhage. Soluble adenylate kinase maintains high ATP levels in diabetic retinopathy eyes. Ecto-nucleotidases are co-expressed in the human retina and optic nerve head. Alkaline phosphatase is expressed on neovascular tissues excised from diabetic eyes.
Electronic supplementary material The online version of this article (10.1007/s00109-018-01734-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2018; 151:3-11. [PMID: 30593881 DOI: 10.1016/j.brainresbull.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Neurogenesis is a process of generating functional neurons, which occurs during embryonic and adult stages in mammals. While neurogenesis during development phase is characterized by intensive proliferation activity in all regions of the brain to form the architecture and neural function of the nervous system, adult neurogenesis occurs with less intensity in two brain regions and is involved in the maintenance of neurogenic niches, local repair, memory and cognitive functions in the hippocampus. Taking such differences into account, the understanding of molecular mechanisms involved in cell differentiation in developmental stages and maintenance of the nervous system is an important research target. Although embryonic and adult neurogenesis presents several differences, signaling through purinergic receptors participates in this process throughout life. For instance, while embryonic neurogenesis involves P2X7 receptor down-regulation and calcium waves triggered by P2Y1 receptor stimulation, adult neurogenesis may be enhanced by increased activity of A2A and P2Y1 receptors and impaired by A1, P2Y13 and P2X7 receptor stimulation.
Collapse
Affiliation(s)
- D E Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Á Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Zhang S, Ye D, Ma L, Ren Y, Dirksen RT, Liu X. Purinergic Signaling Modulates Survival/Proliferation of Human Dental Pulp Stem Cells. J Dent Res 2018; 98:242-249. [PMID: 30383477 DOI: 10.1177/0022034518807920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) reside in postnatal dental pulp and exhibit the potential to differentiate into odontoblasts as well as neurons. However, the intercellular signaling niches necessary for hDPSC survival and self-renewal remain largely unknown. The objective of this study is to demonstrate the existence of intercellular purinergic signaling in hDPSCs and to assess the impact of purinergic signaling on hDPSC survival and proliferation. hDPSCs were isolated from extracted third molars and cultured in minimum essential medium. To demonstrate responsiveness to ATP application and inhibitions by purinergic receptor antagonists, whole cell patch-clamp recordings of ATP-induced currents were recorded from cultured hDPSCs. Immunofluorescence and enzymatic histochemistry staining were performed to assess purinergic receptor expression and ectonucleotidase activity in hDPSCs, respectively. To determine the effects of purinergic signaling on hDPSC, purinergic receptor antagonists and an ectonucleotidase inhibitor were applied in culture medium, and hDPSC survival and proliferation were assessed with DAPI staining and Ki67 immunofluorescence staining, respectively. We demonstrated that ATP application induced inward currents in hDPSCs. P2X and P2Y receptors are involved in the generation of ATP-induced inward currents. We also detected expression of NTPDase3 and ectonucleotidase activity in hDPSCs. We further demonstrated that purinergic receptors were tonically activated in hDPSCs and that inhibition of ectonucleotidase activity enhanced ATP-induced inward currents. Furthermore, we found that blocking P2Y and P2X receptors reduced-and inhibition of ecto-ATPase activity enhanced-the survival and proliferation of hDPSCs, while blocking P2X receptors alone affected only hDPSC proliferation. Autocrine/paracrine purinergic signaling is essential for hDPSC survival and proliferation. These results reveal potential targets to manipulate hDPSCs to promote tooth/dental pulp repair and regeneration.
Collapse
Affiliation(s)
- S Zhang
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D Ye
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - L Ma
- 2 Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China, China
| | - Y Ren
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R T Dirksen
- 3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - X Liu
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,4 Department of Dentistry, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
24
|
Stefani J, Tschesnokowa O, Parrilla M, Robaye B, Boeynaems JM, Acker-Palmer A, Zimmermann H, Gampe K. Disruption of the Microglial ADP Receptor P2Y 13 Enhances Adult Hippocampal Neurogenesis. Front Cell Neurosci 2018; 12:134. [PMID: 29867367 PMCID: PMC5966569 DOI: 10.3389/fncel.2018.00134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In mammalian species, including humans, the hippocampal dentate gyrus (DG) is a primary region of adult neurogenesis. Aberrant adult hippocampal neurogenesis is associated with neurological pathologies. Understanding the cellular mechanisms controlling adult hippocampal neurogenesis is expected to open new therapeutic strategies for mental disorders. Microglia is intimately associated with neural progenitor cells in the hippocampal DG and has been implicated, under varying experimental conditions, in the control of the proliferation, differentiation and survival of neural precursor cells. But the underlying mechanisms remain poorly defined. Using fluorescent in situ hybridization we show that microglia in brain express the ADP-activated P2Y13 receptor under basal conditions and that P2ry13 mRNA is absent from neurons, astrocytes, and neural progenitor cells. Disrupting P2ry13 decreases structural complexity of microglia in the hippocampal subgranular zone (SGZ). But it increases progenitor cell proliferation and new neuron formation. Our data suggest that P2Y13 receptor-activated microglia constitutively attenuate hippocampal neurogenesis. This identifies a signaling pathway whereby microglia, via a nucleotide-mediated mechanism, contribute to the homeostatic control of adult hippocampal neurogenesis. Selective P2Y13R antagonists could boost neurogenesis in pathological conditions associated with impaired hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jennifer Stefani
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Olga Tschesnokowa
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Marta Parrilla
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany.,Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany.,Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany.,Focus Program Translational Neurosciences (FTN), University of Mainz, Mainz, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Kristine Gampe
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
25
|
de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RDF, Corrêa-Velloso JDC, Ulrich H, Ventura ALM, Fragel-Madeira L. P2Y 12 but not P2Y 13 Purinergic Receptor Controls Postnatal Rat Retinogenesis In Vivo. Mol Neurobiol 2018; 55:8612-8624. [PMID: 29574630 DOI: 10.1007/s12035-018-1012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides through P2Y1 receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57KIP2, a cell cycle regulator. However, the role of Gi protein-coupled P2Y12 and P2Y13 receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y12 subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y13 were low. Immunohistochemistry assays performed with rat retina on P3 revealed P2Y12 receptor expression in both Ki-67-positive cells in the neuroblastic layer and Ki-67-negative cells in the ganglion cell layer and inner nuclear layer. Nonetheless, P2Y13 receptor expression could not be detected in any stratum of rat retina. Intravitreal injection of PSB 0739 or clopidogrel, both selective P2Y12 receptor antagonists, increased by 20 and 15%, respectively, the number of Ki-67-positive cells following 24 h of exposure. Moreover, the P2Y12 receptor inhibition increased cyclin D1 and decreased p57KIP2 expression. However, there were no changes in the S phase of the cell cycle (BrdU-positive cells) or in mitosis (phospho-histone-H3-positive cells). Interestingly, an increase in the number of cyclin D1/TUNEL-positive cells after treatment with PSB 0739 was observed. These data suggest that activation of P2Y12 receptors is required for the successful exit of RPCs from cell cycle in the postnatal rat retina.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
26
|
Sebastián-Serrano Á, de Diego-García L, Henshall DC, Engel T, Díaz-Hernández M. Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Front Pharmacol 2018; 9:170. [PMID: 29551976 PMCID: PMC5841270 DOI: 10.3389/fphar.2018.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare heritable metabolic bone disease caused by hypomorphic mutations in the ALPL (in human) or Akp2 (in mouse) gene, encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme. In addition to skeletal and dental malformations, severe forms of HPP are also characterized by the presence of spontaneous seizures. Initially, these seizures were attributed to an impairment of GABAergic neurotransmission caused by altered vitamin B6 metabolism. However, recent work by our group using knockout mice null for TNAP (TNAP-/-), a well-described model of infantile HPP, has revealed a deregulation of purinergic signaling contributing to the seizure phenotype. In the present study, we report that adult heterozygous (TNAP+/-) transgenic mice with decreased TNAP activity in the brain are more susceptible to adenosine 5′-triphosphate (ATP)-induced seizures. Interestingly, when we analyzed the extracellular levels of ATP in the cerebrospinal fluid, we found that TNAP+/- mice present lower levels than control mice. To elucidate the underlying mechanism, we evaluated the expression levels of other ectonucleotidases, as well as different proteins involved in ATP release, such as pannexin, connexins, and vesicular nucleotide transporter. Among these, Pannexin-1 (Panx1) was the only one showing diminished levels in the brains of TNAP+/- mice. Altogether, these findings suggest that a physiological regulation of extracellular ATP levels and Panx1 changes may compensate for the reduced TNAP activity in this model of HPP.
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Dublin, Ireland
| | - Tobías Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Dublin, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
27
|
Azevedo H, Amato Khaled N, Santos P, Bernardi Bertonha F, Moreira-Filho CA. Temporal analysis of hippocampal CA3 gene coexpression networks in a rat model of febrile seizures. Dis Model Mech 2018; 11:dmm.029074. [PMID: 29196444 PMCID: PMC5818071 DOI: 10.1242/dmm.029074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity. Summary: We carried out a temporal analysis of hippocampal gene coexpression networks to identify relevant genes in a rat model of hyperthermic seizures. These genes were mostly related to immune response, cell adhesion and neurogenesis.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Nathália Amato Khaled
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | | |
Collapse
|
28
|
Feldbrügge L, Jiang ZG, Csizmadia E, Mitsuhashi S, Tran S, Yee EU, Rothweiler S, Vaid KA, Sévigny J, Schmelzle M, Popov YV, Robson SC. Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 2017; 14:37-46. [PMID: 29134411 DOI: 10.1007/s11302-017-9590-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.
Collapse
Affiliation(s)
- Linda Feldbrügge
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Tran
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Québec, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec, Université Laval, QC, Québec, G1V 4G2, Canada
| | - Moritz Schmelzle
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Jakovljevic M, Lavrnja I, Bozic I, Savic D, Bjelobaba I, Pekovic S, Sévigny J, Nedeljkovic N, Laketa D. Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis. Front Cell Neurosci 2017; 11:333. [PMID: 29163045 PMCID: PMC5670145 DOI: 10.3389/fncel.2017.00333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.
Collapse
Affiliation(s)
- Marija Jakovljevic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Lecca D, Fumagalli M, Ceruti S, Abbracchio MP. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0433. [PMID: 27377726 DOI: 10.1098/rstb.2015.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
31
|
Swayne LA, Boyce AKJ. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease. Front Cell Neurosci 2017; 11:230. [PMID: 28848396 PMCID: PMC5550711 DOI: 10.3389/fncel.2017.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023] Open
Abstract
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.
Collapse
Affiliation(s)
- Leigh A Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, VancouverBC, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada
| |
Collapse
|
32
|
Yamashiro K, Morita M. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells. Neural Regen Res 2017; 12:881-885. [PMID: 28761414 PMCID: PMC5514856 DOI: 10.4103/1673-5374.208544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Biology, Kobe University Graduate School of Sciences, Kobe, Japan
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Sciences, Kobe, Japan
| |
Collapse
|
33
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
34
|
Benito-Muñoz M, Matute C, Cavaliere F. Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone. Glia 2016; 64:1465-78. [PMID: 27301342 DOI: 10.1002/glia.23010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Abstract
We previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end-product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ. Furthermore, activation of A1 receptors induces downregulation of genes related to neurogenesis as demonstrated by gene expression analysis. Specifically, we found that A1 receptors trigger a signaling cascade that, through the release of IL10, turns on the Bmp2/SMAD pathway. Furthermore, activating A1 receptors in SVZ-neural progenitor cells inhibits neurogenesis and stimulates astrogliogenesis as assayed in vitro in neurosphere cultures and in vivo in the olfactory bulb. Together, these data indicate that adenosine acting at A1 receptors negatively regulates adult neurogenesis while promoting astrogliogenesis, and that this feature may be relevant to pathological conditions whereby purines are profusely released. GLIA 2016;64:1465-1478.
Collapse
Affiliation(s)
- Monica Benito-Muñoz
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| | - Carlos Matute
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| | - Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| |
Collapse
|
35
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
36
|
Oliveira Á, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2015; 104:272-81. [PMID: 26456352 DOI: 10.1016/j.neuropharm.2015.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
ATP (adenosine 5'-triphosphate), one of the most ancient neurotransmitters, exerts essential functions in the brain, including neurotransmission and modulation of synaptic activity. Moreover, this nucleotide has been attributed with trophic properties and experimental evidence points to the participation of ATP-activated P2X and P2Y purinergic receptors in embryonic brain development as well as in adult neurogenesis for maintenance of normal brain functions and neuroregeneration upon brain injury. We discuss here the available data on purinergic P2 receptor expression and function during brain development and in the neurogenic zones of the adult brain, as well as the insights based on the use of in vitro stem cell cultures. While several P2 receptor subtypes were shown to be expressed during in vitro and in vivo neurogenesis, specific functions have been proposed for P2Y1, P2Y2 metabotropic as well as P2X2 ionotropic receptors to promote neurogenesis. Further, the P2X7 receptor is suggested to function in the maintenance of pools of neural stem and progenitor cells through induction of proliferation or cell death, depending on the microenvironment. Pathophysiological actions have been proposed for this receptor in worsening damage in brain disease. The P2X7 receptor and possibly additional P2 receptor subtypes have been implicated in pathophysiology of neurological diseases including Parkinson's disease, Alzheimer's disease and epilepsy. New strategies in cell therapy could involve modulation of purinergic signaling, either in the achievement of more effective protocols to obtain viable and homogeneous cell populations or in the process of functional engraftment of transplanted cells into the damaged brain. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ágatha Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie der Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil.
| |
Collapse
|
37
|
Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:243-54. [PMID: 26359530 DOI: 10.1016/j.neuropharm.2015.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 02/03/2023]
Abstract
Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- M Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain.
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Juan Ignacio Diaz-Hernandez
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
38
|
Cavaliere F, Donno C, D'Ambrosi N. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 2015; 9:211. [PMID: 26082684 PMCID: PMC4451364 DOI: 10.3389/fncel.2015.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/16/2015] [Indexed: 01/25/2023] Open
Abstract
Extracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing enzymes, and release extracellular purines that mediate autocrine and paracrine growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects and immunomodulatory actions. Here, we discuss the often opposing roles played by ATP and adenosine in adult neurogenesis in both physiological and pathological conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus on how purinergic ligands produced and released by transplanted stem cells can be regarded as ideal candidates to mediate the crosstalk with resident stem cell niches, promoting cell growth and survival, regulating inflammation and, therefore, contributing to local tissue homeostasis and repair.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED and University of Basque Country, Leioa Spain
| | - Claudia Donno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| | - Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| |
Collapse
|
39
|
Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 2015; 362:163-76. [PMID: 25959293 DOI: 10.1007/s00441-015-2179-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
Abstract
Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5'-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5'-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.
Collapse
|
40
|
NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation. Purinergic Signal 2014; 11:155-60. [PMID: 25504514 DOI: 10.1007/s11302-014-9440-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Eye formation in vertebrates is controlled by a conserved pattern of molecular networks. Homeobox transcription factors are crucially involved in the establishment and maintenance of the retina. A previous study of Massé et al. (Nature, 449: 1058-62, 2007) using morpholino knockdown identified the ectonucleotidase NTPDase2 and the P2Y1 receptor as essential elements for eye formation in embryos of the clawed frog Xenopus laevis. In order to investigate whether a similarly essential mechanism would be active in mammalian eye development, we analyzed mice KO for Entpd2 or P2ry1 as well as double KO for Entpd2/P2ry1. These mice developed normal eyes. In order to identify potential deficits in the molecular identity or in the arrangement of the cellular elements of the retina, we performed an immunohistological analysis using a variety of retinal markers. The analysis of single and double KO mice demonstrated that NTPDase2 and P2Y1 receptors are not required for murine eye formation, as previously shown for eye development in Xenopus laevis.
Collapse
|