1
|
Tindal K, Cousins F, Palmer KR, Ellery S, Vollenhoven B, Gargett CE, Gordon A, Bradford B, Davies-Tuck M. Your period and your pregnancy, a cohort study of pregnant patients investigating the associations between menstruation and birth outcomes in Australia: study protocol. BMJ Open 2025; 15:e091813. [PMID: 39843375 PMCID: PMC11784170 DOI: 10.1136/bmjopen-2024-091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Early pregnancy care involves the screening and identification of women with risk factors for adverse pregnancy outcomes, including stillbirth or preterm birth, to tailor pregnancy care and interventions accordingly. Most stillbirths and approximately two-thirds of preterm births, however, occur in the absence of evident risk factors. The majority of stillbirths occur in the preterm period, yet there are few interventions targeting this period, and progress to reduce stillbirth rates remains slow. Placental dysfunction is a major contributor to stillbirth, particularly, preterm stillbirth. Here, the endometrial environment may shed light on factors that influence placental development and the trajectory of a pregnancy. Menstrual symptoms or abnormal uterine bleeding (AUB) can indicate endometrial disorders, which are associated with infertility and adverse pregnancy outcomes. Whether AUB is associated with pregnancy outcomes in the absence of a diagnosed endometrial pathology, however, remains unknown. Limited information regarding a woman's menstrual cycle is captured in routine early pregnancy assessments, such as the last menstrual period and menstrual cycle length. Given the latent diagnosis of endometrial disorders and that up to a third of all women experience AUB during their lifetime, determining the association between menstrual characteristics and pregnancy outcomes has the potential to uncover new clinical strategies to reduce adverse pregnancy outcomes. Therefore, this study aims to understand the association between menstruation and pregnancy outcomes to identify which menstrual characteristics could provide value as a pregnancy risk assessment tool. METHODS AND ANALYSIS This is a prospective study of women aged 18-45 with a singleton pregnancy. Participants will be recruited in early pregnancy at their antenatal appointment and not have a known diagnosed endometrial pathology (endometriosis, adenomyosis, endometrial cancer or an endometrial submucosal fibroid) or have had an endometrial ablation. Participants will also be excluded if there is a planned termination of pregnancy or a termination of pregnancy for psychosocial reasons. Women will complete a menstrual history survey to capture menstrual cycle length, regularity, level of pain, heaviness of flow and other menstrual symptoms. Participants will consent to having the survey data linked with their pregnancy and birth outcome information. The primary outcome is a composite of stillbirth, spontaneous preterm birth, pre-eclampsia or fetal growth restriction. Participants will also be invited to complete an optional fetal movements survey at 28-32 and 36+ weeks' gestation, and consent for placental collection at the time of birth will be sought. ETHICS AND DISSEMINATION Ethics approval was obtained from Monash Health Human Research Ethics Committee (83559) on 24 April 2024. The study will be conducted in accordance with these conditions. Findings will be disseminated through peer-reviewed publications and conference presentations.
Collapse
Affiliation(s)
- Kirstin Tindal
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Fiona Cousins
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Kirsten Rebecca Palmer
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- Women's Health Research Program, Monash Health, Melbourne, Victoria, Australia
| | - Stacey Ellery
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- Women's Health Research Program, Monash Health, Melbourne, Victoria, Australia
| | - Caroline E Gargett
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Adrienne Gordon
- Department of Paediatrics, University of Sydney - Camden Campus, Camden, New South Wales, Australia
| | - Billie Bradford
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Miranda Davies-Tuck
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Chung J, Rogers PA. Improving Replication in Endometrial Omics: Understanding the Influence of the Menstrual Cycle. Int J Mol Sci 2025; 26:857. [PMID: 39859570 PMCID: PMC11766126 DOI: 10.3390/ijms26020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
The dynamic nature of human endometrial tissue presents unique challenges in analysis. Despite extensive research into endometrial disorders such as endometriosis and infertility, recent systematic reviews have highlighted concerning issues with the reproducibility of omics studies attempting to identify biomarkers. This review examines factors contributing to poor reproducibility in endometrial omics research. Hormonal fluctuations in the menstrual cycle lead to widespread molecular changes in the endometrium, most notably in gene expression profiles. In this review, we examine the variability in omics data due to the menstrual cycle and highlight the importance of accurate menstrual cycle dating for effective statistical modelling. The current standards of endometrial dating lack precision and we make the case for using molecular-based modelling methods to estimate menstrual cycle time for endometrium tissue samples. Additionally, we discuss statistical considerations such as confounding and interaction effects, as well as the importance of recording the detailed and accurate clinical information of patients. By addressing these methodological challenges, we aim to establish more robust and reproducible research practises, increasing the reliability of endometrial omics research and biomarker discovery.
Collapse
Affiliation(s)
- Jessica Chung
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Adrian Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| |
Collapse
|
3
|
Huang J, Liu F, Qi T, Gao R, Xie H, Ruan L, He J, Li F, Liu T, Xu H, Chen X. Benzo(a)pyrene promotes autophagy to impair endometrial decidualization via inhibiting CXCL12/CXCR4 axis. Chem Biol Interact 2025; 405:111288. [PMID: 39454710 DOI: 10.1016/j.cbi.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Benzo(a)pyrene (BaP), a pervasive environmental pollutant with endocrine-disrupting properties, has been associated with detrimental effects on pregnancy. During early pregnancy, the endometrial decidualization process is critical for embryo implantation. Abnormal decidualization can lead to implantation failure, aberrant placental formation, and pregnancy loss. We previously revealed that BaP exposure impaired decidualization and implantation in mice, yet the underlying mechanisms remained elusive. Autophagy, a cellular mechanism pivotal for energy and material recycling, contributes to the decidualization process. The chemokine C-X-C motif chemokine ligand 12 (CXCL12), secreted by endometrium stromal cells (ESCs), is involved in regulating endometrial decidualization and autophagy. Therefore, this study aimed to explore the hypothesis that BaP disrupts the decidualization process by interfering with autophagic pathways via the CXCL12/CXCR4 axis during early pregnancy. We found that BaP inhibited CXCL12/CXCR4 expression, and induced autophagy by promoting autophagosome formation, which in turn impaired the decidualization in early pregnant mice uterus and decidual stromal cells (DSCs). Using autophagy inhibitors 3-methyladenine and chloroquine in combination with BaP to treat DSCs, successfully weakened BaP-induced autophagy, and relieved decidual injury. Additionally, activation of CXCL12/CXCR4 by recombinant protein CXCL12 attenuated BaP-induced autophagy, inhibited the PI3K/AKT signal activation caused by BaP, and partly rescued the expression of decidualization-related genes. In summary, this study demonstrates that BaP induces autophagy in DSCs by inhibiting the CXCL12/CXCR4 axis, leading to damage in endometrial decidualization during early pregnancy. The findings provide a critical chemokine-mediated regulatory mechanism involved in embryo implantation and contribute valuable knowledge to the reproductive toxicology of BaP.
Collapse
Affiliation(s)
- Jiaying Huang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China; Jiangbei District Center for Disease Control and Prevention, No. 90, Taping, Jiangbei District, Chongqing, PR China
| | - Fengxia Liu
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Tao Qi
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongye Xie
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Lingyan Ruan
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
4
|
Sun JX, Yao Y, Li WX, Su X, Yang H, Lu Z, Liu C, Xu XH, Jin L. Upregulation of GPR133 expression impaired the phagocytosis of macrophages in recurrent spontaneous miscarriage. Epigenetics 2024; 19:2337087. [PMID: 38564758 PMCID: PMC10989699 DOI: 10.1080/15592294.2024.2337087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.
Collapse
Affiliation(s)
- Jia-Xue Sun
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Yongli Yao
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Wen-Xuan Li
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Xin Su
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Haoyu Yang
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Zhouping Lu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Chenfei Liu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Xiang-Hong Xu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Liping Jin
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| |
Collapse
|
5
|
Tang X, Zhu Y, Cao Z, Wang X, Cai X, Tang Y, Zhou J, Wu M, Zhen X, Ding L, Yan G, Wang H, Sun H, Jiang R. CDC42 deficiency leads to endometrial stromal cell senescence in recurrent implantation failure. Hum Reprod 2024; 39:2768-2784. [PMID: 39487595 PMCID: PMC11630066 DOI: 10.1093/humrep/deae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/22/2024] [Indexed: 11/04/2024] Open
Abstract
STUDY QUESTION Does the downregulation of cell division cycle 42 (CDC42) protein in endometrial stroma lead to endometrial senescence in patients with recurrent implantation failure (RIF), and what is the potential mechanism? SUMMARY ANSWER CDC42 deficiency causes endometrial stromal senescence and decidualization defects, impairing uterine receptivity of RIF patients, via activation of Wnt signaling pathway. WHAT IS KNOWN ALREADY Uterine aging is unique due to the cyclic remodeling and decidualization of endometrial tissue. Several transcriptomic studies have reported increased senescence in the endometrium in young patients with RIF. Our previous transcriptomic sequencing study discovered that endometrium from women with RIF showed downregulation of CDC42, which is an essential molecule affected by various senescence-related diseases. STUDY DESIGN, SIZE, DURATION The endometrial samples of a total of 71 fertile control patients and 37 RIF patients were collected to verify the association between CDC42 expression and endometrial senescence of RIF patients. Primary endometrial stromal cells (EnSCs) were isolated from endometrial biopsies taken from patients without any endometrial complications and planning to undergo IVF, then subjected to adenovirus-mediated CDC42 knockdown and decidualization induction to explore the detailed mechanism by which CDC42 governs stromal senescence and decidualization. Wnt inhibitor XAV-939 was used to correct the endometrial senescence and decidualization defect. PARTICIPANTS/MATERIALS, SETTING, METHODS Senescence was determined by cell cycle arrest markers (e.g. P16, P21, and P53), SASP molecules (e.g. IL6 and CXCL8), and SA-β-gal staining. Masson's staining and Sirius Red staining were used to detect the endometrial fibrosis. Decidualization was evaluated by the mRNA expression and protein secretion of PRL and IGFBP1, F-actin immunostaining, and the BeWo spheroids 'in vitro implantation' model. Methods used to assess cell function included adenovirus transduction, RNA-sequencing, bioinformatic analysis, western blotting, RT-qPCR, ELISA, and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Here, we observed remarkably increased levels of stromal senescence and fibrosis, along with stromal CDC42 deficiency, in the endometrium of patients with RIF (P < 0.001). Knockdown of CDC42 effectively induced premature senescence in EnSCs, leading to aberrant accumulation of senescent EnSCs and collagen deposition during decidualization. CDC42 deficiency in EnSCs restrained the decidualization differentiation and receptivity to trophoblast cells. Transcriptomic analysis revealed Wnt signaling activation as a critical downstream alteration in CDC42-deficient EnSCs. Mechanistically, CDC42 interacted with AKT competitively to impede the binding of GSK3β to AKT. Knockdown of CDC42 increased AKT-mediated phosphorylation of GSK3β to inactivate the Axin-GSK3β destruction complex, leading to accumulation and nuclear translocation of β-catenin. Importantly, Wnt signaling inhibitors partially corrected the endometrial senescence caused by CDC42 deficiency, and improved both decidualization and trophoblast invasion. LARGE SCALE DATA RNA-seq data sets generated in this study have been deposited at the NCBI database with BioProject accession number PRJNA1102745. LIMITATIONS, REASONS FOR CAUTION The present study was based on in vitro cell cultures. Further studies involving CDC42-regulated endometrial senescence are needed in knockout mice model and human endometrial assembloids. WIDER IMPLICATIONS OF THE FINDINGS In addition to uncovering endometrial senescence in RIF, our findings underscore the significance of CDC42 in modulating EnSC senescence to maintain the decidualization function, and suggest Wnt signaling inhibitors as potential therapeutic agents for alleviating endometrial senescence. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China [82271698 (R.J.), 82030040 (H.S.), 82288102 (H.W.), and 82371680 (G.Y.)]; the Natural Science Foundation of Jiangsu Province [BK20231117 (R.J.)]; and the Medical Science and Technology Development Foundation of Nanjing Department of Health [YKK23097 (Y.Z.)]. The authors declare no potential conflicts of interest.
Collapse
Affiliation(s)
- Xinyi Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yingchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoying Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yurun Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
7
|
Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod 2024; 111:987-999. [PMID: 39325972 DOI: 10.1093/biolre/ioae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Miscarriage poses a significant threat to both maternal and fetal health. Its etiology remains unknown, and there are no established effective identification or prevention strategies. A low-oxygen environment in early pregnancy is a physiological necessity for embryonic and placental growth. Hypoxia-inducible factors are a family of classic hypoxia signaling molecules whose expression level may fluctuate abnormally because of an imbalance in oxygen levels. Its unusual fluctuations initiate multiple signaling pathways at the maternal womb. Hypoxia-inducible factors are a family of classic hypoxia-signaling molecules and immune tolerance. Notably, aberrant regulation of these processes may lead to miscarriage. This review aims to clarify how the hypoxia-inducible factor-1α mediates the aberrant regulation of biological processes, including autophagy, metabolic reprogramming, et al., and how these effects impact trophoblasts and other cells at the maternal-fetal interface. These findings provide new insights into potential therapeutic and preventive strategies for miscarriage.
Collapse
Affiliation(s)
- Yuxuan Lai
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Fu
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Gao
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Shi JW, Lai ZZ, Zhou WJ, Yang HL, Zhang T, Sun JS, Zhao JY, Li MQ. TNFSF14 + natural killer cells prevent spontaneous abortion by restricting leucine-mediated decidual stromal cell senescence. EMBO J 2024; 43:5018-5036. [PMID: 39261664 PMCID: PMC11535022 DOI: 10.1038/s44318-024-00220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.
Collapse
Affiliation(s)
- Jia-Wei Shi
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Ningbo University, Ningbo, 315021, People's Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Wen-Jie Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
9
|
Fernández L, Kong CS, Alkhoury M, Tryfonos M, Brighton PJ, Rawlings TM, Muter J, Gori MS, Leirós CP, Lucas ES, Brosens JJ, Ramhorst R. The endoplasmic reticulum protein HSPA5/BiP is essential for decidual transformation of human endometrial stromal cells. Sci Rep 2024; 14:25992. [PMID: 39472623 PMCID: PMC11522507 DOI: 10.1038/s41598-024-76241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Decidualization denotes the process of inflammatory reprogramming of endometrial stromal cells (EnSC) into specialized decidual cells (DC). During this process, EnSC are subjected to endoplasmic reticulum (ER) stress as well as acute cellular senescence. Both processes contribute to the proinflammatory mid-luteal implantation window and their dysregulation has been implicated in reproductive failure. Here, we evaluated the link between ER stress, decidual differentiation and senescence. In-silico analysis identified HSPA5 gene, codifying the ER chaperone BiP, as a potentially critical regulator of cell fate divergence of decidualizing EnSC into anti-inflammatory DC and pro-inflammatory senescent decidual cells (snDC). Knockdown of HSPA5 in primary EnSC resulted both in decreased expression of DC marker genes and attenuated induction of senescence associated β-galactosidase activity, a marker of snDC. Stalling of the decidual reaction upon HSPA5 knockdown was apparent at 8 days of differentiation and was preceded by the upregulation of ER stress associated proteins IRE1α and PERK. Further, HSPA5 knockdown impaired colony-forming unit activity of primary EnSC, indicative of loss of cellular plasticity. Together, our results point to a key role for HSPA5/BiP in decidual transformation of EnSCs and highlight the importance of constraining ER stress levels during this process.
Collapse
Affiliation(s)
- Laura Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Chow-Seng Kong
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Majd Alkhoury
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Maria Tryfonos
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Thomas M Rawlings
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Maria Soledad Gori
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Emma S Lucas
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
- Faculty of Health, University of Sheffield, Sheffield, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina.
- School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2 Piso 4, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Zarnani K, Zarnani K, Maslehat-Lay N, Zeynali B, Vafaei S, Shokri MR, Vanaki N, Soltanghoraee H, Mirzadegan E, Edalatkhah H, Naderi MM, Sarvari A, Attari F, Jeddi-Tehrani M, Zarnani AH. In-utero transfer of decidualized endometrial stromal cells increases the frequency of regulatory T cells and normalizes the abortion rate in the CBA/J × DBA/2 abortion model. Front Immunol 2024; 15:1440388. [PMID: 39380998 PMCID: PMC11460546 DOI: 10.3389/fimmu.2024.1440388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Failure to adequate decidualization leads to adverse pregnancy outcomes including pregnancy loss. Although there are plenty of reports underscoring immune dysfunction as the main cause of abortion in CBA/J females mated with DBA/2 males (CBA/J × DBA/2), little is known about the potential role of impaired endometrial decidualization. Methods Endometrial stromal cells (ESCs) from CBA/J mice were in-vitro decidualized, and the proteome profile of the secretome was investigated by membrane-based array. CBA/J mice were perfused In-utero with either decidualized ESCs (C×D/D), undecidualized ESCs (C×D/ND), or PBS (C×D/P) 12 days before mating with DBA/2 males. Control mice were not manipulated and were mated with male DBA/2 (C×D) or Balb/c (C×B) mice. On day 13.5 of pregnancy, reproductive parameters were measured. In-vivo tracking of EdU-labeled ESCs was performed using fluorescence microscopy. The frequency of regulatory T cells (Tregs) in paraaortic/renal and inguinal lymph nodes was measured by flow cytometry. The proliferation of pregnant CBA/J splenocytes in response to stimulation with DBA/2 splenocytes was assessed by 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) flow cytometry. Results In C×D/D mice, the resorption rate was reduced to match that seen in the C×B group. Intrauterine perfused ESCs appeared in uterine stroma after 2 days, which remained there for at least 12 days. There was no difference in the number of implantation sites and embryo weight across all groups. The frequency of Tregs in the inguinal lymph nodes was similar across all groups, but it increased in the paraaortic/renal lymph nodes of C×D/D mice to the level found in C×B mice. No significant changes were observed in the proliferation of splenocytes from pregnant C×D/D compared to those of the C×D group in response to stimulation with DBA/2 splenocytes. Decidualization of ESCs was associated with a profound alteration in ESC secretome exemplified by alteration in proteins involved in extracellular matrix (ECM) remodeling, response to inflammation, senescence, and immune cell trafficking. Discussion Our results showed that the deficiency of Tregs is not the primary driver of abortion in the CBA/J × DBA/2 model and provided evidence that impaired endometrial decidualization probably triggers endometrial immune dysfunction and abortion in this model.
Collapse
Affiliation(s)
- Kayhan Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Nasim Maslehat-Lay
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab., School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ali Sarvari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Deryabin PI, Borodkina AV. The Role of the Endometrium in Implantation: A Modern View. Int J Mol Sci 2024; 25:9746. [PMID: 39273693 PMCID: PMC11395593 DOI: 10.3390/ijms25179746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
According to the current data, the endometrium acts as a "sensor" of embryo quality, which promotes the implantation of euploid embryos and prevents the implantation and/or subsequent development of genetically abnormal embryos. The present review addresses the nature of the "sensory function" of the endometrium and highlights the necessity for assessing its functional status. The first section examines the evolutionary origin of the "sensory" ability of the endometrium as a consequence of spontaneous decidualization that occurred in placental animals. The second section details the mechanisms for implementing this function at the cellular level. In particular, the recent findings of the appearance of different cell subpopulations during decidualization are described, and their role in implantation is discussed. The pathological consequences of an imbalance among these subpopulations are also discussed. Finally, the third section summarizes information on currently available clinical tools to assess endometrial functional status. The advantages and disadvantages of the approaches are emphasized, and possible options for developing more advanced technologies for assessing the "sensory" function of the endometrium are proposed.
Collapse
Affiliation(s)
- Pavel I Deryabin
- Mechanisms of Cellular Senescence Laboratory, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, Saint-Petersburg 194064, Russia
| | - Aleksandra V Borodkina
- Mechanisms of Cellular Senescence Laboratory, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, Saint-Petersburg 194064, Russia
| |
Collapse
|
12
|
Kendirci-Katirci R, Sati L, Celik-Ozenci C. Deciphering the role of rapamycin in modulating decidual senescence: implications for decidual remodeling and implantation failure. J Assist Reprod Genet 2024; 41:2441-2456. [PMID: 39066928 PMCID: PMC11405573 DOI: 10.1007/s10815-024-03207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
PURPOSE Physiological decidual senescence promotes embryo implantation, whereas pathological decidual senescence causes many pregnancy pathologies. The aim of this study was to evaluate the effect of rapamycin on decidual cell subpopulations and endometrial function in physiological and induced senescence and to investigate the decidual cell subpopulations present in physiological conditions during early pregnancy and implantation in mice. METHODS Control, physiological decidualization (0.5 mM cAMP and 1 μM MPA added), and induced senescence (0.1 mM HU added) models with and without 200 nM rapamycin treatment were established using a human endometrial stromal cell line, and decidual cell subpopulations were analyzed by immunofluorescence and flow cytometry. The human extravillous trophoblast cell line AC-1M88 was also cultured in decidualization models, and spheroid expansion analysis was performed. In in vivo studies, decidual cell subpopulations were analyzed by immunofluorescence during early mouse pregnancy. RESULTS The results revealed that rapamycin decreased DIO2 and β-GAL expressions in physiological and induced senescence without FOXO1. Notably, in induced senescence, increased fragmentation was observed in AC-1M88 cells, and rapamycin treatment successfully attenuated the fragmentation of spheroids. We showed that the FOXO1-DIO2 signaling axis can trigger decidual senescence during early gestation and days of implantation in mice. CONCLUSIONS Our study underlines the importance of rapamycin in modulating decidual cell subpopulations and endometrial tissue function during decidual senescence. The information obtained may provide insight into the pathologies of pregnancy seen due to decidual senescence and guide better treatment strategies for reproductive problems.
Collapse
Affiliation(s)
| | - Leyla Sati
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
13
|
Tindal K, Cousins FL, Ellery SJ, Palmer KR, Gordon A, Filby CE, Gargett CE, Vollenhoven B, Davies-Tuck ML. Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review. J Clin Med 2024; 13:4430. [PMID: 39124698 PMCID: PMC11312851 DOI: 10.3390/jcm13154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment. Menstrual fluid has been applied to the study of endometriosis, unexplained infertility and early pregnancy loss; however, it is yet to be examined regarding adverse pregnancy outcomes. These adverse outcomes, including preeclampsia, foetal growth restriction (FGR), spontaneous preterm birth and perinatal death (stillbirth and neonatal death), lay on a spectrum of severity and are often attributed to placental dysfunction. The source of this placental dysfunction is largely unknown and may be due to underlying endometrial abnormalities or endometrial interactions during placentation. We present existing evidence for the endometrial contribution to adverse pregnancy outcomes and propose that a more comprehensive understanding of menstruation can provide insight into the endometrial environment, offering great potential value as a diagnostic tool to assess pregnancy risk. As yet, this concept has hardly been explored.
Collapse
Affiliation(s)
- Kirstin Tindal
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| | - Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Kirsten R. Palmer
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Adrienne Gordon
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Filby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Miranda L. Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| |
Collapse
|
14
|
Yin S, Yang Y, Wang Q, Guo W, He Q, Yuan L, Si K. Association between Abortion and All-Cause and Cause-Specific Premature Mortality: A Prospective Cohort Study from the UK Biobank. HEALTH DATA SCIENCE 2024; 4:0147. [PMID: 39011272 PMCID: PMC11246836 DOI: 10.34133/hds.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Background: Concerns have been raised about the increasing prevalence of both spontaneous and induced abortions worldwide, yet their effect on premature mortality remains poorly understood. We aimed to examine the associations between abortion and all-cause and cause-specific premature mortality, and the potential effect modification by maternal characteristics. Methods: Women aged 39 to 71 years at baseline (2006 to 2010) with prior pregnancies were derived from the UK Biobank and categorized as no abortion history, spontaneous abortion alone, induced abortion alone, and both spontaneous and induced abortions. All-cause and cause-specific mortality were ascertained through linkage to death certificate data, with premature death defined as occurring before the age of 70. Results: Of the 225,049 ever gravid women, 43,418 (19.3%) reported spontaneous abortion alone, 27,135 (12.1%) reported induced abortion alone, and 10,448 (4.6%) reported both spontaneous and induced abortions. During a median of 14.4 years of follow-up, 5,353 deaths were recorded, including 3,314 cancer-related and 1,444 cardiovascular deaths. Compared with no abortion history, spontaneous abortion alone was associated with an increased risk of all-cause premature mortality (adjusted hazard ratio [aHR] 1.10, 95% confidence interval [CI] 1.02 to 1.17), and induced abortion alone was associated with increased risks of all-cause (aHR 1.12, 95% CI 1.04 to 1.22) and cardiovascular mortality (aHR 1.27, 95% CI 1.09 to 1.48). The aHRs for all-cause and cardiovascular mortality were higher for recurrent abortions, whether spontaneous or induced (P trend < 0.05). The increased risk of all-cause mortality associated with induced abortion was higher in women with hypertensive disorders of pregnancy than in those without (40% vs. 9%, P interaction = 0.045). Conclusions: Either spontaneous or induced abortion alone was associated with an increased risk of premature mortality, with induced abortion alone particularly linked to cardiovascular death. Future studies are encouraged to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Shaohua Yin
- Department of Medical Engineering,
Peking University Third Hospital, Beijing, China
| | - Yingying Yang
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Qin Wang
- Department of Health Management,
Naval Medical University, Shanghai, China
| | - Wei Guo
- Department of Military Health Statistics,
Naval Medical University, Shanghai, China
| | - Qian He
- Department of Military Health Statistics,
Naval Medical University, Shanghai, China
| | - Lei Yuan
- Department of Health Management,
Naval Medical University, Shanghai, China
| | - Keyi Si
- Department of Environmental Health, School of Public Health,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang J, Xue M, Huang J, He S, Zhu L, Zhao X, Wang B, Jiang T, Zhang Y, Miao C, Zhou G. Deficiency of UCHL1 results in insufficient decidualization accompanied by impaired dNK modulation and eventually miscarriage. J Transl Med 2024; 22:478. [PMID: 38769534 PMCID: PMC11103838 DOI: 10.1186/s12967-024-05253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. METHODS With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. RESULTS The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. CONCLUSIONS UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mingxing Xue
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shan He
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiaonan Zhao
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bei Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583985. [PMID: 38559249 PMCID: PMC10979868 DOI: 10.1101/2024.03.07.583985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.
Collapse
|
17
|
Chadchan SB, Popli P, Liao Z, Andreas E, Dias M, Wang T, Gunderson SJ, Jimenez PT, Lanza DG, Lanz RB, Foulds CE, Monsivais D, DeMayo FJ, Yalamanchili HK, Jungheim ES, Heaney JD, Lydon JP, Moley KH, O'Malley BW, Kommagani R. A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in endometrial function and endometriosis. Nat Commun 2024; 15:1947. [PMID: 38431630 PMCID: PMC10908778 DOI: 10.1038/s41467-024-46180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Eryk Andreas
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie J Gunderson
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia T Jimenez
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
19
|
de Almeida Schneider R, Barros Terraciano P, Zanon P, Quandt L, Zanini Gotardi DH, Alves Garcez TN, Santi L, Beys da Silva WO, Sereno Montenegro I, Yates J, Almeida Guimarães J, Pandolfi Passos E, Berger M. Mechanisms involved in the cytoprotective effects of Lonomia obliqua venom on human endometrial stromal cells. Toxicon 2024; 240:107630. [PMID: 38342412 DOI: 10.1016/j.toxicon.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The pathophysiology of recurrent pregnancy loss (RPL) involves deficiencies in the proliferation and migration capacities of endometrial stromal cells (hESCs), which impair embryo implantation and development. Since animal venoms are rich source of bioactive molecules, we aimed to characterize the cytoprotective effects of Lonomia obliqua venom on hESCs. hESCs were isolated from endometrial biopsies and the mechanisms of L. obliqua venomous secretions on cell viability, proliferation and migration were characterized. Venom components were identified by chromatography and proteomic analyses. L. obliqua venom induced hESC proliferation, viability and migration in a dose-dependent manner, both in the presence and absence of serum. By ion-exchange chromatography, one fraction enriched in cytoprotective components and devoid of hemotoxins was obtained. Venom proteome identified at least six protein classes with potential cytoprotective properties (hemolins, lipocalins, hemocyannins, antiviral proteins, antimicrobial peptides, and protease inhibitors). L. obliqua venom protected hESCs from oxidative insult. Cytoprotection was also related to nitric oxide and PKC-ERK-activation and down-regulation of cAMP-PKA-dependent pathways that control cell proliferation. L. obliqua venom-induced hESC viability, proliferation and migration occurs mainly by protecting against oxidative damage and activating ERK. Thus, L. obliqua venom components are promising pharmacological tools to understand the underlying mechanisms of hESC deficiency in RPL.
Collapse
Affiliation(s)
- Raquel de Almeida Schneider
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Debora Helena Zanini Gotardi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys da Silva
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivan Sereno Montenegro
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jorge Almeida Guimarães
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Chemerinski A, Garcia de Paredes J, Blackledge K, Douglas NC, Morelli SS. Mechanisms of endometrial aging: lessons from natural conceptions and assisted reproductive technology cycles. Front Physiol 2024; 15:1332946. [PMID: 38482194 PMCID: PMC10933110 DOI: 10.3389/fphys.2024.1332946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 01/02/2025] Open
Abstract
Until recently, the study of age-related decline in fertility has focused primarily on the ovary; depletion of the finite pool of oocytes and increases in meiotic errors leading to oocyte aneuploidy are well-established mechanisms by which fertility declines with advancing age. Comparatively little is known about the impact of age on endometrial function. The endometrium is a complex tissue comprised of many cell types, including epithelial, stromal, vascular, immune and stem cells. The capacity of this tissue for rapid, cyclic regeneration is unique to this tissue, undergoing repeated cycles of growth and shedding (in the absence of an embryo) in response to ovarian hormones. Furthermore, the endometrium has been shown to be capable of supporting pregnancies beyond the established boundaries of the reproductive lifespan. Despite its longevity, molecular studies have established age-related changes in individual cell populations within the endometrium. Human clinical studies have attempted to isolate the effect of aging on the endometrium by analyzing pregnancies conceived with euploid, high quality embryos. In this review, we explore the existing literature on endometrial aging and its impact on pregnancy outcomes. We begin with an overview of the principles of endometrial physiology and function. We then explore the mechanisms behind endometrial aging in its individual cellular compartments. Finally, we highlight lessons about endometrial aging gleaned from rodent and human clinical studies and propose opportunities for future study to better understand the contribution of the endometrium to age-related decline in fertility.
Collapse
Affiliation(s)
- Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | | | | | | |
Collapse
|
21
|
Li L, Ge H, Zhou J, Wang J, Wang L. Polycystic ovary syndrome and adverse pregnancy outcomes: potential role of decidual function. Drug Discov Ther 2024; 17:378-388. [PMID: 38148009 DOI: 10.5582/ddt.2023.01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting fertility and mental health among women of reproductive age. In addition to anovulation and hyperandrogenism, patients also experience metabolic issues, such as insulin resistance, obesity, and dyslipidemia, as well as chronic low-grade inflammation throughout the body. Recent studies have shown that even with assisted reproductive technology to treat anovulatory issues, patients with PCOS still have higher rates of adverse pregnancy outcomes and abortion compared to normal pregnancies. These findings suggest that PCOS may impair the endometrium and disrupt the onset and maintenance of healthy pregnancies. Decidualization is a crucial step in the process of healthy pregnancy, during which endometrial stromal cells (ESCs) differentiate into secretory decidual stromal cells (DSCs) regulated by hormones and local metabolism. This article comprehensively reviews the pathological processes of PCOS and the mechanisms involved in its impaired decidualization. In addition, we explore how PCOS increases the incidence of adverse pregnancy outcomes (APO). By gaining a better understanding of the adverse effects of PCOS on pregnancy and its specific mechanisms, we hope to provide a theoretical basis for reducing APO and improving the live birth rate among women with PCOS.
Collapse
Affiliation(s)
- Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hanting Ge
- Reproductive Medicine Center, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
22
|
Lee JW, Lee HY. Exploring distinct properties of endometrial stem cells through advanced single-cell analysis platforms. Stem Cell Res Ther 2023; 14:379. [PMID: 38124100 PMCID: PMC10734114 DOI: 10.1186/s13287-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
23
|
Park SR, Kim SR, Min EK, Oh BC, Jung Y, Kim YH, Lee HY. Unveiling the potential effects of acetylsalicylic acid: insights into regeneration in endometrial stem cells. Cell Commun Signal 2023; 21:323. [PMID: 37950232 PMCID: PMC10638813 DOI: 10.1186/s12964-023-01339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Although acetylsalicylic acid has been widely used for decades to treat and prevent various diseases, its potential effects on endometrial receptivity and subsequent pregnancy rates are still controversial due to conflicting data: many reports have shown positive effects of acetylsalicylic acid, whereas others have found that it has no effect. Furthermore, the direct effects of acetylsalicylic acid on various functions of normal endometrial cells, especially endometrial stem cells, and their underlying molecular mechanisms have not yet been proven. Recently, studies have revealed that a reduced number of active stem/progenitor cells within endometrial tissue limits cyclic endometrial regeneration and subsequently decreases pregnancy success rates, suggesting that endometrial stem cells play a critical role in endometrial regeneration and subsequent endometrial receptivity. METHODS We assessed whether aspirin treatment can inhibit various endometrial stem cell functions related to regenerative capacity, such as self-renewal, migration, pluripotency/stemness, and differentiation capacity, in vitro. Next, we evaluated whether SERPINB2 regulates the effects of aspirin on endometrial stem cell functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. To further investigate whether aspirin also inhibits various endometrial stem cell functions in vivo, aspirin was administered daily to mice through intraperitoneal (i.p.) injection for 7 days. RESULTS In addition to its previously identified roles, to the best of our knowledge, we found for the first time that acetylsalicylic acid directly inhibits various human endometrial stem cell functions related to regenerative capacity (i.e., self-renewal, migration, differentiation, and capacity) through its novel target gene SERPINB2 in vitro. Acetylsalicylic acid exerts its function by suppressing well-known prosurvival pathways, such as Akt and/or ERK1/2 signaling, through a SERPINB2 signaling cascade. Moreover, we also found that acetylsalicylic acid markedly inhibits regenerative capacity-related functions in endometrial stem cells within tissue. CONCLUSIONS We have found that acetylsalicylic acid has diverse effects on various endometrial stem cell functions related to regenerative capacity. Our findings are a critical step toward the development of more effective therapeutic strategies to increase the chances of successful pregnancy. Video Abstract.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Eun-Kyung Min
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, 24341, Chuncheon, Republic of Korea.
| |
Collapse
|
24
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
25
|
Teh WT, Chung J, Holdsworth-Carson SJ, Donoghue JF, Healey M, Rees HC, Bittinger S, Obers V, Sloggett C, Kendarsari R, Fung JN, Mortlock S, Montgomery GW, Girling JE, Rogers PAW. A molecular staging model for accurately dating the endometrial biopsy. Nat Commun 2023; 14:6222. [PMID: 37798294 PMCID: PMC10556104 DOI: 10.1038/s41467-023-41979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Natural variability in menstrual cycle length, coupled with rapid changes in endometrial gene expression, makes it difficult to accurately define and compare different stages of the endometrial cycle. Here we develop and validate a method for precisely determining endometrial cycle stage based on global gene expression. Our 'molecular staging model' reveals significant and remarkably synchronised daily changes in expression for over 3400 endometrial genes throughout the cycle, with the most dramatic changes occurring during the secretory phase. Our study significantly extends existing data on the endometrial transcriptome, and for the first time enables identification of differentially expressed endometrial genes with increasing age and different ethnicities. It also allows reinterpretation of all endometrial RNA-seq and array data that has been published to date. Our molecular staging model will significantly advance understanding of endometrial-related disorders that affect nearly all women at some stage of their lives, such as heavy menstrual bleeding, endometriosis, adenomyosis, and recurrent implantation failure.
Collapse
Affiliation(s)
- W T Teh
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Melbourne IVF, Melbourne, Victoria, Australia
| | - J Chung
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Victoria, Australia
| | - S J Holdsworth-Carson
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Victoria, Australia
| | - J F Donoghue
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
| | - M Healey
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
| | - H C Rees
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - S Bittinger
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - V Obers
- Melbourne Pathology, Collingwood, Victoria, Australia
| | - C Sloggett
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Melbourne, Victoria, Australia
| | - R Kendarsari
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
- Illumina Inc. 11 Biopolis Way, Singapore, 138667, Singapore
| | - J N Fung
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - S Mortlock
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - G W Montgomery
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - J E Girling
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Aotearoa, New Zealand
| | - P A W Rogers
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia.
- Royal Women's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Kaur L, Sundrani D, Dave K, Randhir K, Mehendale S, Bayyana S, Kalyanaraman K, Chandak GR, Joshi S. Hypoxia Inducible Factors (HIF1α and HIF3α) are differentially methylated in preeclampsia placentae and are associated with birth outcomes. Mol Cell Biochem 2023; 478:2309-2318. [PMID: 36708442 DOI: 10.1007/s11010-023-04661-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Preeclampsia is a placental vascular pathology and hypoxia is known to influence placental angiogenesis. Hypoxia Inducible Factors (HIF1α and HIF3α) mediate the response to cellular oxygen concentration and bind to hypoxia response element of target genes. However the mechanism regulating above activity is not well-understood. We investigated if placental DNA methylation (DNAm) and expression of HIF1α and 3α genes are altered and associated with pre-eclampsia, placental weight and birth outcomes. Using a cohort comprising women with preeclampsia [N = 100, delivering at term (N = 43) and preterm (N = 57)] and normotensive controls (N = 100), we analysed DNAm in HIF1α and 3α, and their mRNA expression in placentae, employing pyrosequencing and quantitative real-time PCR, respectively. We observed significant hypermethylation at cg22891070 of HIF3α in preeclampsia placentae compared to controls (β = 1.5%, p = 0.04). CpG8 in the promoter region of HIF1α, showed marginally significant hypomethylation in preterm preeclampsia compared to controls (β = - 0.15%, p = 0.055). HIF1α expression was significantly lower in preterm preeclampsia compared to controls (mean ± SE = 10.16 ± 2.00 vs 4.25 ± 0.90, p = 0.04). Further, DNAm in HIF1α promoter region was negatively associated with its expression levels (β = - 0.165, p = 0.024). Several CpGs in HIF1α were negatively associated with placental weight and birth outcomes including birth weight (β range = - 0.224-0.300) and birth length [β range = - 0.248 to - 0.301 (p < 0.05 for all)]. Overall, we demonstrate altered DNAm in HIF1α and HIF3α in preeclampsia placentae, also associated with various birth outcomes. Correlation of DNAm in HIF1α and its expression suggests a possible role in the pathogenesis of pre-eclampsia. Further investigations on interactions between HIF1α and HIF3α in preeclampsia would be interesting.
Collapse
Affiliation(s)
- Lovejeet Kaur
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
- Maternal and Child Health (MCH), Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Kinjal Dave
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Savita Mehendale
- Department of Gynecology and Obstetrics, Bharati Vidyapeeth Medical College and Hospital, Pune, 411043, India
| | - Swati Bayyana
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Kumaran Kalyanaraman
- CSI Epidemiology Research Unit, Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|
28
|
Lindsay CV, Potter JA, Grimshaw AA, Abrahams VM, Tong M. Endometrial responses to bacterial and viral infection: a scoping review. Hum Reprod Update 2023; 29:675-693. [PMID: 37290428 PMCID: PMC10477945 DOI: 10.1093/humupd/dmad013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The endometrium is a highly dynamic tissue that undergoes dramatic proliferation and differentiation monthly in order to prepare the uterus for implantation and pregnancy. Intrauterine infection and inflammation are being increasingly recognized as potential causes of implantation failure and miscarriage, as well as obstetric complications later in gestation. However, the mechanisms by which the cells of the endometrium respond to infection remain understudied and recent progress is slowed in part owing to similar overlapping studies being performed in different species. OBJECTIVE AND RATIONALE The aim of this scoping review is to systematically summarize all published studies in humans and laboratory animals that have investigated the innate immune sensing and response of the endometrium to bacteria and viruses, and the signaling mechanisms involved. This will enable gaps in our knowledge to be identified to inform future studies. SEARCH METHODS The Cochrane Library, Ovid Embase/Medline, PubMed, Scopus, Google Scholar, and Web of Science databases were searched using a combination of controlled and free text terms for uterus/endometrium, infections, and fertility to March 2022. All primary research papers that have reported on endometrial responses to bacterial and viral infections in the context of reproduction were included. To focus the scope of the current review, studies in domesticated animals, included bovine, porcine, caprine, feline, and canine species were excluded. OUTCOMES This search identified 42 728 studies for screening and 766 full-text studies were assessed for eligibility. Data was extracted from 76 studies. The majority of studies focused on endometrial responses to Escherichia coli and Chlamydia trachomatis, with some studies of Neisseria gonorrhea, Staphylococcus aureus, and the Streptococcus family. Endometrial responses have only been studied in response to three groups of viruses thus far: HIV, Zika virus, and the herpesvirus family. For most infections, both cellular and animal models have been utilized in vitro and in vivo, focusing on endometrial production of cytokines, chemokines, and antiviral/antimicrobial factors, and the expression of innate immune signaling pathway mediators after infection. This review has identified gaps for future research in the field as well as highlighted some recent developments in organoid systems and immune cell co-cultures that offer new avenues for studying endometrial responses to infection in more physiologically relevant models that could accelerate future findings in this area. WIDER IMPLICATIONS This scoping review provides an overarching summary and benchmark of the current state of research on endometrial innate immune responses to bacterial and viral infection. This review also highlights some exciting recent developments that enable future studies to be designed to deepen our understanding of the mechanisms utilized by the endometrium to respond to infection and their downstream effects on uterine function.
Collapse
Affiliation(s)
- Christina V Lindsay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Jin F, Liu W, Cheng G, Cai S, Yin T, Diao L. The function of decidua natural killer cells in physiology and pathology of pregnancy. Am J Reprod Immunol 2023; 90:e13755. [PMID: 37641369 DOI: 10.1111/aji.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.
Collapse
Affiliation(s)
- Fangfang Jin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Guan Cheng
- Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Han S, Liu S, Jin NQ, Lv YS, Yang M, Ma S, Fu Y, Zhao SK, Liu MH. Mitochondrial energy metabolism is downregulated in repeated implantation failure patients related to alteration of PGC-1α acetylation level. Mol Reprod Dev 2023. [PMID: 37243981 DOI: 10.1002/mrd.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Herein we aimed at exploring mitochondrial energy metabolism status in patients with repeated implantation failure (RIF) and whether key regulatory factor PGC-1α of energy metabolism is involved in the decidualization of endometrial stromal cells. Mitochondrial oxidative phosphorylation level and ATP synthesis were compared in primary endometrial stromal cells from RIF and control group. At the same time, as one of key transcription regulators of mitochondrial energy metabolism, the expression level and acetylation level of PGC-1α were compared with two groups. Then, we downregulated the acetylation levels of PGC-1α, and the expression of decidual markers (PRL and IGFBP1) was observed further. Mitochondrial energy metabolism, showing by mitochondrial oxidative phosphorylation level and ATP synthesis, was decreased in the endometrial stromal cells of the RIF group (RIF-hEnSCs). Meanwhile, PGC-1α acetylation levels were significantly higher in RIF-hEnSCs. When we reduced the acetylation levels of PGC-1α in RIF-hEnSCs, the basal O2 consumption rate and maximal respiration were increased, and also the PRL and IGFBP1. Overall, our data indicated that the endometrial stromal cells of the RIF patients had low level of mitochondrial energy metabolism. Reducing acetylation level of key energy metabolism regulator PGC-1α can increase the decidualization level of RIF-hEnSCs. These findings may inspire new ideas about the treatment of RIF.
Collapse
Affiliation(s)
- Shuo Han
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sai Liu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Nai-Qian Jin
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ya-Su Lv
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuai Ma
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yao Fu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shan-Ke Zhao
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ming-Hui Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
32
|
Abstract
Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-4610, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| |
Collapse
|
33
|
Holdsworth-Carson SJ, Menkhorst E, Maybin JA, King A, Girling JE. Cyclic processes in the uterine tubes, endometrium, myometrium, and cervix: pathways and perturbations. Mol Hum Reprod 2023; 29:gaad012. [PMID: 37225518 PMCID: PMC10208902 DOI: 10.1093/molehr/gaad012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Indexed: 05/26/2023] Open
Abstract
This review leads the 2023 Call for Papers in MHR: 'Cyclical function of the female reproductive tract' and will outline the complex and fascinating changes that take place in the reproductive tract during the menstrual cycle. We will also explore associated reproductive tract abnormalities that impact or are impacted by the menstrual cycle. Between menarche and menopause, women and people who menstruate living in high-income countries can expect to experience ∼450 menstrual cycles. The primary function of the menstrual cycle is to prepare the reproductive system for pregnancy in the event of fertilization. In the absence of pregnancy, ovarian hormone levels fall, triggering the end of the menstrual cycle and onset of menstruation. We have chosen to exclude the ovaries and focus on the other structures that make up the reproductive tract: uterine tubes, endometrium, myometrium, and cervix, which also functionally change in response to fluctuations in ovarian hormone production across the menstrual cycle. This inaugural paper for the 2023 MHR special collection will discuss our current understanding of the normal physiological processes involved in uterine cyclicity (limited specifically to the uterine tubes, endometrium, myometrium, and cervix) in humans, and other mammals where relevant. We will emphasize where knowledge gaps exist and highlight the impact that reproductive tract and uterine cycle perturbations have on health and fertility.
Collapse
Affiliation(s)
- Sarah J Holdsworth-Carson
- Julia Argyrou Endometriosis Centre, Epworth HealthCare, Melbourne, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne and Gynaecology Research Centre, Royal Women’s Hospital, Melbourne, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne and Gynaecology Research Centre, Royal Women’s Hospital, Melbourne, Australia
| | - Jacqueline A Maybin
- Institute for Regeneration and Repair, MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Anna King
- Department of Obstetrics and Gynaecology, NHS Lothian, Edinburgh, UK
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, University of Melbourne and Gynaecology Research Centre, Royal Women’s Hospital, Melbourne, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Fitzgerald HC, Kelleher AM, Ranjit C, Schust DJ, Spencer TE. Basolateral secretions of human endometrial epithelial organoids impact stromal cell decidualization. Mol Hum Reprod 2023; 29:gaad007. [PMID: 36821428 PMCID: PMC10321591 DOI: 10.1093/molehr/gaad007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are primarily governed by the steroid hormones estrogen (E2) and progesterone (P4) but can also be influenced by extrinsic factors from the stroma. Using a human endometrial epithelial organoid system, transcriptome and proteome analyses identified distinct responses of the organoids to steroid hormones and prostaglandin E2 (PGE2). Notably, P4 and PGE2 modulated the basolateral secretion of organoid proteins, particularly cystatin C (CST3), serpin family A member 3 (SERPINA3), and stanniocalcin 1 (STC1). CST3, but not SERPINA3 or STC1, attenuated the in vitro stromal decidualization response to steroid hormones and PGE2. These findings provide evidence that uterine gland-derived factors impact stromal cell decidualization, which has implications for pregnancy establishment and fertility in women.
Collapse
Affiliation(s)
- Harriet C Fitzgerald
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Present address: The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168 Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, 3168 Victoria, Australia
| | - Andrew M Kelleher
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Chaman Ranjit
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Danny J Schust
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
- Present address: Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
35
|
Resta C, Moustogiannis A, Chatzinikita E, Malligiannis Ntalianis D, Malligiannis Ntalianis K, Philippou A, Koutsilieris M, Vlahos N. Gonadotropin-Releasing Hormone (GnRH)/GnRH Receptors and Their Role in the Treatment of Endometriosis. Cureus 2023; 15:e38136. [PMID: 37122983 PMCID: PMC10145781 DOI: 10.7759/cureus.38136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Endometriosis, defined as the development of endometrial tissue outside of the uterine cavity, is a common gynecological disorder. The prevalence of pelvic endometriosis approaches 6%-10% in the general female population, and in women with pain, infertility, or both, the frequency is 35%-50%. The gold standard recommended process for diagnosing endometriosis is laparoscopy, an invasive surgical procedure, with or without histologic verification. The currently available nonsurgical treatments include oral contraceptives (estrogen-progestogen preparations), progestogen preparations (containing progesterone derivatives), androgenic hormones (danazol), and gonadotropin-releasing hormone (GnRH) agonists and antagonists. Two GnRH types have been discovered in mammals, GnRH I and GnRH II. In particular, GnRH I is released by the hypothalamus; however, it can be present in various tissues and organs of the body, including neural tissue, where it exerts neuroendocrine, autocrine, and paracrine actions in the peripheral and central nervous system (CNS). Interestingly, another GnRH isoform, GnRH III, has been identified, which has 60% similarity with GnRH I from which it varies by four amino acids. This peptide has been shown to have a significant role in reproduction, specifically in gametogenesis and steroidogenesis. Further research is needed to identify innovative treatment options for endometriosis, such as the therapeutic exogenous administration of GnRH II or antagonists of the GnRH I receptor. In this review, we examined the role of GnRH in endometriosis, outlining the specific actions of GnRH and GnRH receptors (GnRHRs). The innovative use of GnRH analogs and antagonists in the treatment of endometriosis is also discussed.
Collapse
Affiliation(s)
- Christina Resta
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, GRC
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Athens, GRC
| | - Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, GRC
| | - Eirini Chatzinikita
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, GRC
| | | | | | - Anastasios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, GRC
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, GRC
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Athens, GRC
| |
Collapse
|
36
|
Wu Y, Li M, Zhang J, Wang S. Unveiling uterine aging: Much more to learn. Ageing Res Rev 2023; 86:101879. [PMID: 36764360 DOI: 10.1016/j.arr.2023.101879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Uterine aging is an important factor that impacts fertility, reproductive health, and uterus-related diseases; however, it remains poorly explored. Functionally, these disturbances have been associated with an abnormal hormonal response in the endometrium and decreased endometrial receptivity. Based on emerging evidence, these alterations are mediated via the senescence of endometrial stem cells and impaired decidualization of endometrial stromal cells. Multiple molecular activities may participate in uterine aging, including oxidative stress, inflammation, fibrosis, DNA damage response, and cellular senescence. Over the past decade, several protective strategies targeting these biological processes have afforded promising results, including stem cell therapy, anti-aging drugs, and herbal medicines. However, the currently available evidence is fragmented and scattered. Here, we summarize the most recent findings regarding uterine aging, including functional and structural alterations and potential cellular and molecular mechanisms, and discuss potential protective interventions against uterine aging. Thereby, we hope to provide a comprehensive understanding of the pathophysiological processes and underlying mechanisms associated with uterine aging, as well as improve fecundity and reproductive outcomes in females of advanced reproductive age.
Collapse
Affiliation(s)
- Yaling Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Milu Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Cheng Y, Wang H, Shang J, Wang J, Yin J, Zhang J, Guo X, Wang S, Duan YG, Lee CL, Chiu PCN, Zhang J, Yeung WSB, Cao D, Yao Y. Transcriptomic analysis of mid-secretory endometrium reveals essential immune factors associated with pregnancy after single euploid blastocyst transfer. Am J Reprod Immunol 2023; 89:e13672. [PMID: 36542433 DOI: 10.1111/aji.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Implantation is a limiting factor for treatment success in assisted reproduction. Both embryonic and endometrial factors contribute to implantation. Embryonic factors have often been ignored in previous studies about the role of endometrium in implantation. In this study, we sought to identify the endometrial genes associated with negative pregnancy outcomes following the transfer of a single euploid blastocyst. METHODS Computational analyses of the transcriptomes of mid-secretory endometria from nine pregnant and seven non-pregnant patients in a cycle preceding the transfer of a single euploid blastocyst in a vitrified-warmed cycle were performed. RESULTS Principal component analysis of two reported endometrial receptivity gene sets showed close clustering of the pregnant and non-pregnant samples. Differential gene expression analysis and co-expression module analysis identified 131 genes associated with the pregnancy status. The endometrial signatures identified highlight the importance of immune and metabolic regulation in pregnancy outcome. Network analysis identified 20 hub genes that could predict pregnancy outcomes with 88.9% sensitivity and 85.7% specificity. Single-cell gene expression analysis highlighted the regulation of endometrial natural killer (NK) cells, T cells, and macrophages during embryo implantation. Immune cell abundance analysis supported the dysregulation of cytotoxic immune cells in the endometria of non-pregnant women. CONCLUSIONS We reported the first endometrial gene signature associated with pregnancy after elimination of embryo aneuploidy and highlighted the importance of the endometrial immune microenvironment and metabolic status in pregnancy outcomes.
Collapse
Affiliation(s)
- Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Jin Shang
- Medical School of Chinese PLA, Beijing, China
| | - Jue Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingwen Yin
- Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing, China
| | | | - Xinmeng Guo
- College of Medicine, Nankai University, Tianjin, China
| | - Sidong Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jian Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Metabolic Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Marron K, Harrity C. Correlation of peripheral blood and endometrial immunophenotyping in ART: is peripheral blood sampling useful? J Assist Reprod Genet 2023; 40:381-387. [PMID: 36574140 PMCID: PMC9935767 DOI: 10.1007/s10815-022-02696-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Using a comprehensive flow cytometric panel, simultaneously obtained mid-luteal immunophenotypes from peripheral blood and endometrium were compared and values correlated. Is a peripheral blood evaluation of reproductive immunophenotype status meritorious relative to local endometrial evaluation to directly assess the peri-implantation environment? METHODS Fifty-five patients had a mid-luteal biopsy to assess the local endometrial immunophenotype, while simultaneously providing a peripheral blood sample for analysis. Both samples were immediately assessed using a comprehensive multi-parameter panel, and lymphocyte subpopulations were described and compared. RESULTS Distinct lymphocyte proportions and percentage differences were noted across the two compartments, confirming the hypothesis that they are distinct environments. The ratio of CD4 + to CD8 + T cells were reversed between the two compartments, as were Th1 and Th2-type CD4 + T cell ratios. Despite these differences, some direct relationships were noted. Positive Pearson correlations were found between the levels of CD57 + expressing natural killer cells, CD3 + NK-T cells and CD4 + Th1 cells in both compartments. CONCLUSIONS Flow cytometric evaluation provides a rapid and objective analysis of lymphocyte subpopulations. Endometrial biopsies have become the gold standard technique to assess the uterine immunophenotype in adverse reproductive outcome, but there may still a place for peripheral blood evaluation in this context. The findings demonstrate significant variations in cellular proportions across the two regions, but some positive correlations are present. Immunological assessment of these specific peripheral blood lymphocyte subtypes may provide insight into patients with potential alterations of the uterine immune environment, without the risks and inconveniences associated with an invasive procedure.
Collapse
Affiliation(s)
- Kevin Marron
- Sims IVF Clinic, Clonskeagh Road, Clonskeagh, Dublin 14, Ireland.
| | - Conor Harrity
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
39
|
Zeng S, Liang Y, Lai S, Bi S, Huang L, Li Y, Deng W, Xu P, Liu M, Xiong Z, Chen J, Tu Z, Chen D, Du L. TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent pregnancy loss. J Reprod Immunol 2023; 155:103776. [PMID: 36495656 DOI: 10.1016/j.jri.2022.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Defects in decidual response are associated with adverse pregnancy outcomes which includes recurrent pregnancy loss (RPL). It is reported that cellular senescence happens during decidualization and pro-senescent decidual response in the luteal phase endometrium is related to RPL. However, the underlying mechanisms of how excessive decidual senescence takes place in RPL decidua cells remain largely unexplored. The senescent phenotype of RPL decidua and tumor necrosis factor receptor 1(TNFR1) expression were analyzed by using our previously published single-cell sequencing dataset of decidua cells from 6 RPL and 5 matched normal decidua, which were further verified by PCR and WB in decidual tissues. Effects of TNFα on the decidual stromal cells (DSCs) senescence and underlying molecular pathways were analyzed using the in vitro decidualization model of human endometrial stromal cells (HESCs). We showed that decidual stroma cells from RPL patients exhibited transcriptomic features of cellular senescence by analysis of single-cell datasets. The TNFα level and TNFR1 expression were increased in RPL decidua tissues. Furthermore, in vitro cell model demonstrated that increased TNFα induced excessive senescence during decidualization and TNFR1/p53/p16 pathway mediates TNFα-induced stromal senescence. In addition, we also found that the expression of IGFBP1 was regulated by TNFα-TNFR1 interaction during decidualization. Taken together, the present findings suggest that the increased secretion of TNFα induced stromal cell excessive senescence in RPL decidua, which is mediated via TNFR1, and thus provide a possible therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Shanshan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Siying Lai
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pei Xu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Fan Y, Lee RWK, Ng XW, Gargett CE, Chan JKY. Subtle changes in perivascular endometrial mesenchymal stem cells after local endometrial injury in recurrent implantation failure. Sci Rep 2023; 13:225. [PMID: 36604485 PMCID: PMC9816312 DOI: 10.1038/s41598-023-27388-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Improvements in reproductive techniques have resulted in the live birth rates from IVF procedures increasing from 5% to approximately 30% in recent decades but has plateaued since. Emerging preclinical and clinical data implicates endometrial receptivity deficiencies in patients with recurrent implantation failure (RIF) as the predominant factor hindering successful implantation. Mechanisms on how local endometrial injury (LEI) improves implantation rates in patients with RIF are currently unknown. We hypothesized that LEI may influence perivascular endometrial mesenchymal stem/progenitor cells (eMSCs) which are thought to regenerate the stromal vascular component of the functional layer every month. Here, we assessed the effect of LEI on the proportion and function of eMSCs present in consecutive LEI biopsies. Consecutive paired mid-luteal phase endometrial biopsies obtained from patients with RIF were digested to single cells and the proportion of SUSD2-expressing cells determined. Growth kinetics and decidualization were compared between the consecutive LEI samples. A mid-luteal LEI altered the decidualization capacity of SUSD2+ eMSCs in women with RIF, but not their proportion or clonogenicity. With the potential of LEI to improve IVF outcomes in women with RIF, additional investigations are needed to understand the impact of the altered decidualization response in eMSCs.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore. .,Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore. .,Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.
| | - Ryan Wai Kheong Lee
- grid.414963.d0000 0000 8958 3388Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Xiang Wen Ng
- grid.414963.d0000 0000 8958 3388Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Caroline E. Gargett
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC Australia
| | - Jerry Kok Yen Chan
- grid.414963.d0000 0000 8958 3388Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
41
|
Menkhorst E, So T, Rainczuk K, Barton S, Zhou W, Edgell T, Dimitriadis E. Endometrial stromal cell miR-19b-3p release is reduced during decidualization implying a role in decidual-trophoblast cross-talk. Front Endocrinol (Lausanne) 2023; 14:1149786. [PMID: 37008948 PMCID: PMC10061138 DOI: 10.3389/fendo.2023.1149786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. METHOD miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. RESULTS From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. DISCUSSION Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- *Correspondence: Ellen Menkhorst,
| | - Teresa So
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Kate Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Siena Barton
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Tracey Edgell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
42
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
43
|
Brosens JJ, Bennett PR, Abrahams VM, Ramhorst R, Coomarasamy A, Quenby S, Lucas ES, McCoy RC. Maternal selection of human embryos in early gestation: Insights from recurrent miscarriage. Semin Cell Dev Biol 2022; 131:14-24. [PMID: 35094946 PMCID: PMC9325922 DOI: 10.1016/j.semcdb.2022.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection. Aneuploidy originating in oocytes during meiosis drives the age-related risk of miscarriage. By contrast, the frequency of endometrial cycles with an impaired decidual response may account for the stepwise increase in miscarriage rates with each pregnancy loss independently of maternal age. Additional physiological mechanisms operate in early gestation to ensure that most failing pregnancies are lost before vascular maternal-fetal connections are established by the end of the first trimester. Here, we summarise how investigations into the mechanisms that cause miscarriage led to new insights into the processes that govern maternal selection of human embryos in early gestation.
Collapse
Affiliation(s)
- Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK.
| | - Phillip R Bennett
- Tommy's National Centre for Miscarriage Research, Imperial College London, UK
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Arri Coomarasamy
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
44
|
A novel role of follicle-stimulating hormone (FSH) in various regeneration-related functions of endometrial stem cells. Exp Mol Med 2022; 54:1524-1535. [PMID: 36117220 PMCID: PMC9534881 DOI: 10.1038/s12276-022-00858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Follicle-stimulating hormone (FSH) promotes the production and secretion of estrogen, which in turn stimulates the growth and maturation of ovarian follicles. Therefore, consecutive FSH treatment to induce ovarian hyperstimulation (superovulation) is still considered the most cost-effective option for the majority of assisted reproductive technologies (ARTs). However, a relatively high cancellation rate and subsequent low pregnancy outcomes (approximately 15%) are the most challenging aspects of this FSH-based ART. Currently, the main cause for this low implantation rate of FSH-based ART has not yet been revealed. Therefore, we hypothesized that these high cancellation rates with FSH-based superovulation protocols might be associated with the harmful effects of consecutive FSH treatment. Importantly, several recent studies have revealed that tissue-resident stem cell deficiency can significantly reduce cyclic endometrial regeneration and subsequently decrease the pregnancy outcome. In this context, we investigated whether FSH treatment could directly inhibit endometrial stem cell functions and consequently suppress endometrial regeneration. Consistent with our hypothesis, our results revealed for the first time that FSH could inhibit various regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, and multilineage differentiation capacities, via the PI3K/Akt and ERK1/2 signaling pathways both in vitro and in vivo. Follicle-stimulating hormone (FSH) is commonly administered to treat female infertility by stimulating the ovaries, but FSH treatment can also inhibit key cellular and physiological processes required for successful pregnancy. In the light of pregnancy outcomes as low as 15 percent after FSH-based assisted reproduction technologies, In-Sun Hong at Gachon University, Incheon, South Korea, and colleagues investigated the effects of FSH. Working with cultured human stem cells from the lining of the uterus, they found that FSH could inhibit multiple cellular regenerative functions that normally maintain this lining. They also identified a specific molecular signaling pathway involved in mediating these inhibitory effects. Studies in mice supported the cell culture results. The findings could help improve infertility treatment strategies by guiding research into methods to alleviate the unwanted effects of FSH.
Collapse
|
45
|
The Regulators of Human Endometrial Stromal Cell Decidualization. Biomolecules 2022; 12:biom12091275. [PMID: 36139114 PMCID: PMC9496326 DOI: 10.3390/biom12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Several factors are important for implantation and subsequent placentation in the endometrium, including immunity, angiogenesis, extracellular matrix, glucose metabolism, reactive oxidative stress, and hormones. The involvement or abnormality of these factors can impair canonical decidualization. Unusual decidualization can lead to perinatal complications, such as disruption of trophoblast invasion. Drastic changes in the morphology and function of human endometrial stromal cells (hESCs) are important for decidualization of the human endometrium; hESCs are used to induce optimal morphological and functional decidualization in vitro because they contain estrogen and progesterone receptors. In this review, we will focus on the studies that have been conducted on hESC decidualization, including the results from our laboratory.
Collapse
|
46
|
Marron K, Harrity C. Potential utility of a non-invasive menstrual blood immunophenotype analysis in reproductive medicine. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0047. [PMID: 36173705 PMCID: PMC9641796 DOI: 10.1530/raf-22-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/16/2022] [Indexed: 08/27/2023] Open
Abstract
Purpose Can a comprehensive flow cytometry panel be used to assess immunophenotype profiles in menstrual blood of patients experiencing reproductive failure and age matched controls of proven fertility? Methods 58 recurrent pregnancy loss and repeated implantation failure patients, along with 15 age matched controls of proven fertility, had menstrual blood samples obtained within the first 24 hours of the onset of menstruation to non-invasively assess the local immunophenotype. Using a comprehensive multi-parameter flow panel the lymphocyte sub-populations were described and compared. Results Relative to well established peripheral blood immunophenotyping values, distinct lymphocyte population differences were noted between the subgroups. The ratios of CD4+ and CD8+ T-cells were inverted relative to peripheral blood and uterine NK cells represented by CD56bright were distinctly visualised, emphasising the distinction of menstrual and peripheral blood. Relative to controls there were marked increases in CD3+ve T-cells (p=0.009), CD4:CD8 ratio (p=0.004), CD19 B-cells (p=0.026) and CD56dim NK's (p=0.002) in the reproductive failure cases. Conclusions Flow cytometric evaluation can provide a rapid and objective analysis of lymphocyte subpopulations in many forms of tissue and fluid. The findings show significant variations in cellular composition of immune cells indicating a distinct compartment, with differences between cases and controls. Immunological assessment of the menstrual blood immunophenotype, in clinically appropriate patients, may provide insight into the aetiology of adverse reproductive outcome, without the risks and inconveniences associated with a more invasive endometrial biopsy.
Collapse
Affiliation(s)
| | - Conor Harrity
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
47
|
Park SR, Kim SK, Kim SR, Yu WJ, Lee SJ, Lee HY. Effects of smoking on the tissue regeneration-associated functions of human endometrial stem cells via a novel target gene SERPINB2. Stem Cell Res Ther 2022; 13:404. [PMID: 35932085 PMCID: PMC9356492 DOI: 10.1186/s13287-022-03061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Smokers directly inhale mainstream cigarette smoke, which contains numerous known and potential toxic substances, and thus, smoking is expected to have broad harmful effects that cause tissue injury and dysfunction. Interestingly, many studies have suggested that the recent decline in female fertility and increased rate of spontaneous abortion could be associated with increased smoking rates. Indeed, women that smoked for 10 years or more were reported to have a ~ 20% higher infertility rate than women that had never smoked. However, the reasons for the underlying harmful aspects of smoking on female fertility remain a matter of debate. Importantly, a previous study revealed that resident endometrial stem cell deficiency significantly limits the cyclic regeneration potential of endometrium, which, in turn, decreases successful pregnancy outcomes. In this context, we postulated that exposure to mainstream cigarette smoke extracts might decrease female fertility by inhibiting the functions of resident endometrial stem cells. METHODS We investigated whether cigarette mainstream smoke exposure directly inhibits various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, pluripotency, and differentiation capacity in vitro. Next, we determined whether SERPINB2 mediates cigarette smoke-induced suppressive effects on various tissue regeneration-associated functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. Mice were injected intraperitoneally with low (0.5 mg/kg) or high (1 mg/kg) doses of cigarette smoke extract (10 times for two weeks), and endometrial stem cells were then isolated from mice uterine tissues. RESULTS We found that exposure to cigarette smoke extracts remarkably suppressed various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, multilineage differentiation ability, and pluripotency in vitro and in vivo by activating the SERPINB2 gene. Indeed, cigarette smoke-induced inhibitory effects on various endometrial stem cell functions were significantly abolished by SERPINB2 knockdown. CONCLUSIONS These findings provide valuable information on the harmful effects of cigarette smoking on resident endometrial stem cells and hopefully will facilitate the developments of promising therapeutic strategies for subfertile or infertile women that smoke cigarettes.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Seong-Kwan Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductivoxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductivoxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
48
|
Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Park SR, Kim SK, Kim SR, Park JR, Lim S, Hong IS. Novel roles of luteinizing hormone (LH) in tissue regeneration-associated functions in endometrial stem cells. Cell Death Dis 2022; 13:605. [PMID: 35831270 PMCID: PMC9279474 DOI: 10.1038/s41419-022-05054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
Luteinizing hormone (LH) stimulates the synthesis and secretion of the key steroid hormone estrogen, which subsequently promotes ovarian follicular growth and development. Therefore, the administration of exogenous LH to achieve superovulation (multiple ovulations) and an LH surge is commonly used as the most effective therapeutic option in a majority of in vitro fertilization (IVF) clinics. However, a relatively low pregnancy rate (between 20% and 35%) is one of the most challenging aspects of LH-based infertility treatment. Furthermore, the major cause of this low pregnancy rate in LH-based infertility treatment remains unidentified. Recent studies have shown that endometrial stem cell loss or deficiency can significantly decrease tissue regeneration ability during the menstrual cycle and reduce endometrial receptivity. In this context, we postulated that the low pregnancy rates following LH-based ovarian hyperactivation may be the result of the adverse effects of consecutive exogenous LH administration on endometrial stem cells. To the best of our knowledge, this study revealed for the first time that in addition to its previously reported roles in stimulating ovarian functions through the pituitary-gonadal axis, LH brings about the extragonadal suppression of various tissue regeneration-associated functions in endometrial stem cells, such as self-renewal, migration ability, multilineage differentiation potential, and pluripotency/stemness, by inhibiting pro-survival Akt and ERK1/2 signaling pathways in vitro and in vivo, and as a consequence, it decreases the endometrial receptivity.
Collapse
Affiliation(s)
- Se-Ra Park
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Seong-Kwan Kim
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Soo-Rim Kim
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Jeong-Ran Park
- grid.412010.60000 0001 0707 9039Division of Science Education, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Soyi Lim
- grid.411653.40000 0004 0647 2885Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| |
Collapse
|
50
|
Bortoletto P, Lucas ES, Melo P, Gallos ID, Devall AJ, Bourne T, Quenby S, Bennett PR, Coomarasamy A, Brosens JJ. Miscarriage syndrome: Linking early pregnancy loss to obstetric and age-related disorders. EBioMedicine 2022; 81:104134. [PMID: 35779492 PMCID: PMC9244729 DOI: 10.1016/j.ebiom.2022.104134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy. We hypothesise that pathological signals interfering with the recruitment or activity of extrauterine cells at the maternal-fetal interface link miscarriage to subsequent adverse pregnancy outcomes, including further pregnancy losses and preterm labour. NK cells and BM-MSC are key homeostatic regulators in multiple tissues, pointing towards a shared aetiology between recurrent miscarriage and age-related disorders, including cardiometabolic disease. We propose the term ‘miscarriage syndrome’ to capture the health risks associated with miscarriage and discuss how this paradigm can inform clinical practice and accelerate the development of preventative strategies.
Collapse
|