1
|
Chiarella E, Aloisio A, Codispoti B, Nappo G, Scicchitano S, Lucchino V, Montalcini Y, Camarotti A, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Has an Inhibitory Effect on the Adipogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2019; 14:901-914. [PMID: 29938352 DOI: 10.1007/s12015-018-9830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors present in the bone marrow stroma and in subcutaneous abdominal fat, an abundant and easily accessible source of MSCs with the ability to differentiate along multiple lineage pathways. The stem cell-associated transcription co-factor Zinc Finger Protein 521 (ZNF521/zfp521) has been implicated in the control of the homeostasis of hematopoietic, neural and osteo-adipogenic progenitors. Here we document through the analysis of a panel of human adipose-derived stem cells (hADSCs), that ZNF521 strongly inhibits the generation of mature adipocytes. Enforced overexpression of ZNF521 in these cells resulted in a significant delay and reduction in adipocyte differentiation upon exposure to inducers of adipogenesis. Of particular relevance, ZNF521 was able to inhibit the expression of ZNF423, recently identified as an essential commitment factor necessary for the generation of pre-adipocytes. Conversely, silencing of ZNF521 was found to significantly enhance the adipogenic differentiation of hADSCs. Inhibition of adipogenesis by ZNF521 was at least in part due to inhibition of EBF1. Taken together, these results confirm a role for ZNF521 as a key negative regulator of adipocyte differentiation of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy.
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Bruna Codispoti
- Tecnologica Research Institute- Marrelli Hospital, Crotone, Italy
| | - Giovanna Nappo
- UCSF Hellen Diller Cancer Center, University of California, San Francisco, CA, USA
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | | | - Olimpio Galasso
- Department of Orthopaedic & Trauma Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Giorgio Gasparini
- Department of Orthopaedic & Trauma Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Heather Mandy Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
2
|
Mesuraca M, Amodio N, Chiarella E, Scicchitano S, Aloisio A, Codispoti B, Lucchino V, Montalcini Y, Bond HM, Morrone G. Turning Stem Cells Bad: Generation of Clinically Relevant Models of Human Acute Myeloid Leukemia through Gene Delivery- or Genome Editing-Based Approaches. Molecules 2018; 23:E2060. [PMID: 30126100 PMCID: PMC6222541 DOI: 10.3390/molecules23082060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in the adult, is believed to arise as a consequence of multiple molecular events that confer on primitive hematopoietic progenitors unlimited self-renewal potential and cause defective differentiation. A number of genetic aberrations, among which a variety of gene fusions, have been implicated in the development of a transformed phenotype through the generation of dysfunctional molecules that disrupt key regulatory mechanisms controlling survival, proliferation, and differentiation in normal stem and progenitor cells. Such genetic aberrations can be recreated experimentally to a large extent, to render normal hematopoietic stem cells "bad", analogous to the leukemic stem cells. Here, we wish to provide a brief outline of the complementary experimental approaches, largely based on gene delivery and more recently on gene editing, employed over the last two decades to gain insights into the molecular mechanisms underlying AML development and progression and on the prospects that their applications offer for the discovery and validation of innovative therapies.
Collapse
Affiliation(s)
- Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900 Crotone, Italy.
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| |
Collapse
|
3
|
Chiarella E, Carrà G, Scicchitano S, Codispoti B, Mega T, Lupia M, Pelaggi D, Marafioti MG, Aloisio A, Giordano M, Nappo G, Spoleti CB, Grillone T, Giovannone ED, Spina R, Bernaudo F, Moore MAS, Bond HM, Mesuraca M, Morrone G. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors. PLoS One 2014; 9:e114795. [PMID: 25502183 PMCID: PMC4264771 DOI: 10.1371/journal.pone.0114795] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Giovanna Carrà
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Bruna Codispoti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Tiziana Mega
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Michela Lupia
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Daniela Pelaggi
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Maria G. Marafioti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Marco Giordano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Giovanna Nappo
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Cristina B. Spoleti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Teresa Grillone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Emilia D. Giovannone
- Laboratory of Molecular Oncology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Francesca Bernaudo
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Malcolm A. S. Moore
- Dept. of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
- * E-mail: (GM); (MM)
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
- * E-mail: (GM); (MM)
| |
Collapse
|
4
|
Park SW, Pyo CW, Choi SY. High-efficiency lentiviral transduction of primary human CD34⁺ hematopoietic cells with low-dose viral inocula. Biotechnol Lett 2014; 37:281-8. [PMID: 25257593 DOI: 10.1007/s10529-014-1678-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Lentivirus-based vectors have the potential to transduce non-dividing primary stem cells. However, primary cells tend to be less susceptible to manipulation and require a high concentration of virus inoculum. Furthermore, increasing the concentration of the lentivirus inoculum may raise safety risks. Therefore, to develop a technique that allows high transduction efficiency at low multiplicities of infection (MOIs), we optimized a lentivirus-based system for cell lines and primary cells by determining the best condition using various parameters. When progenitor cell assays were conducted using human CD34(+) bone marrow and mononuclear cells, the transduction condition yielded a great number of eGFP(+) colonies with lower-dose viral inocula compared to that of current lentivirus-based transduction technologies. In conclusion, this system is anticipated to produce stable expression of a gene introduced into primary cells for preclinical studies with lower safety risks.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Life Sciences, Korea University, Seoul, 136-701, Korea,
| | | | | |
Collapse
|
5
|
Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, Pazzaglia S, Semenkow S, Bar EE, Kool M, Pfister S, Bond HM, Eberhart CG, Steinkühler C, Morrone G. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 2014; 4:1280-92. [PMID: 23907569 PMCID: PMC3787157 DOI: 10.18632/oncotarget.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.
Collapse
Affiliation(s)
- Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Drake AC, Chen Q, Chen J. Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol 2012; 9:215-24. [PMID: 22425741 DOI: 10.1038/cmi.2012.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humanized mice are immunodeficient animals engrafted with human hematopoietic stem cells that give rise to various lineages of human blood cells throughout the life of the mouse. This article reviews recent advances in the generation of humanized mice, focusing on practical considerations. We discuss features of different immunodeficient recipient mouse strains, sources of human hematopoietic stem cells, advances in expansion and genetic modification of hematopoietic stem cells, and techniques to modulate the cytokine environment of recipient mice, in order to enhance reconstitution of specific human blood lineage cells. We highlight the opportunities created by new technologies and discuss practical considerations on how to make best use of the widening array of basic models for specific research applications.
Collapse
Affiliation(s)
- Adam C Drake
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
7
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
8
|
Abstract
Lentiviral vectors (LVs) have emerged as potent and versatile vectors for ex vivo or in vivo gene transfer into dividing and nondividing cells. Robust phenotypic correction of diseases in mouse models has been achieved paving the way toward the first clinical trials. LVs can deliver genes ex vivo into bona fide stem cells, particularly hematopoietic stem cells, allowing for stable transgene expression upon hematopoietic reconstitution. They are also useful to generate induced pluripotent stem cells. LVs can be pseudotyped with distinct viral envelopes that influence vector tropism and transduction efficiency. Targetable LVs can be generated by incorporating specific ligands or antibodies into the vector envelope. Immune responses toward the transgene products and transduced cells can be repressed using microRNA-regulated vectors. Though there are safety concerns regarding insertional mutagenesis, their integration profile seems more favorable than that of gamma-retroviral vectors (gamma-RVs). Moreover, it is possible to minimize this risk by modifying the vector design or by employing integration-deficient LVs. In conjunction with zinc-finger nuclease technology, LVs allow for site-specific gene correction or addition in predefined chromosomal loci. These recent advances underscore the improved safety and efficacy of LVs with important implications for clinical trials.
Collapse
|