1
|
Effects of Intensive Glycemic Control on Serum Exosome miR-126-3p and miR-125b-1-3p Levels and Wound Healing in Patients with Diabetic Ulcers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2523245. [PMID: 36756041 PMCID: PMC9902161 DOI: 10.1155/2023/2523245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Objective Intensive glycemic control and exosomal miRNAs have both been reported to improve wound repair in diabetic ulcers. In this study, we aimed to investigate the effects of intensive glycemic control on serum exosome microRNA-126-3p (miR-126-3p), microRNA-125b-1-3p (miR-125b-1-3p), and wound healing in patients with diabetic ulcers. Methods Herein, 45 diabetic patients with an ulcer, aged 35-75 years old, were randomly assigned to the intensive glycemic control group (n = 21) and the conventional glycemic control group (n = 24). Serum exosomes were extracted in the laboratory and assessed by Western blotting, transmission electron microscopy, and nanoparticle tracking analysis. The expression of miR-126-3p and miR-125b-1-3p was validated using quantitative real-time polymerase chain reaction. The wound healing of each diabetic ulcer patient was measured and imaged; additionally, clinical and follow-up data were collected. Finally, the clinical and laboratory data were combined for statistical analysis. Results Intensive glycemic control was significantly more conducive to wound healing and infection control than conventional glycemic control (P < 0.05). Serum exosomal miR-126-3p was negatively correlated with fasting plasma glucose levels (r = 0.34, P < 0.05) and positively associated with the wound healing rate (r = 0.45, P < 0.01). The level of miR-126-3p in the intensive glycemic control group was significantly higher than that in the conventional glycemic control group (P < 0.01). Serum exosomal miR-125b-1-3p was not correlated with blood glucose levels (r = 0.03, P > 0.05) and was positively associated with the wound healing rate (r = 0.33, P < 0.05). No significant difference was observed in the level of miR-125b-1-3p between the intensive and conventional glycemic control groups. Regarding the prognosis of diabetic ulcers, the intensive glycemic control group was better than the conventional group (Z = -2.02, P < 0.05). Conclusion Serum exosome (miR-125b-1-3p and miR-126-3p) levels are correlated with wound healing in diabetic ulcers. Intensive glycemic control increases the serum exosomal miR-126-3p level, which might be one of the mechanisms that promotes wound healing in diabetic ulcers.
Collapse
|
2
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
3
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
4
|
Rossetti P, Goldoni M, Pengo V, Vescovini R, Mozzoni P, Tassoni MI, Lombardi M, Rubino P, Bernuzzi G, Verzicco I, Manotti C, Quintavalla R. MiRNA 126 as a New Predictor Biomarker in Venous Thromboembolism of Persistent Residual Vein Obstruction: A Review of the Literature Plus a Pilot Study. Semin Thromb Hemost 2021; 47:982-991. [PMID: 34243207 DOI: 10.1055/s-0041-1726341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Venous thromboembolism (VTE) is the third most common cardiovascular disease. Interleukins (ILs) and micro-ribonucleic acids (miRNAs) have been proposed as molecules able to modulate endothelial inflammation and platelet hyperactivity. At present, no early biomarkers are available to predict the outcome of VTE. We investigated in a pilot study a selected number of miRNAs and ILs as prognostic VTE biomarkers and reviewed literature in this setting. Twenty-three patients (aged 18-65) with a new diagnosis of non-oncological VTE and free from chronic inflammatory diseases were enrolled. Twenty-three age- and sex-matched healthy blood donors were evaluated as control subjects. Serum miRNAs (MiRNA 126, 155, 17.92, 195), inflammatory cytokines (IL-6, tumor necrosis factor-α, IL-8), and lymphocyte subsets were evaluated in patients at enrolment (T0) and in controls. In VTE patients, clinical and instrumental follow-up were performed assessing residual vein obstruction, miRNA and ILs evaluation at 3 months' follow-up (T1). At T0, IL-8, activated T lymphocytes, Treg lymphocytes, and monocytes were higher in patients compared with healthy controls, as were miRNA 126 levels. Moreover, miRNA 126 and IL-6 were significantly increased at T0 compared with T1 evaluation in VTE patients. Higher levels of MiR126 at T0 correlated with a significant overall thrombotic residual at follow-up. In recent years an increasing number of studies (case-control studies, in vivo studies in animal models, in vitro studies) have suggested the potential role of miRNAs in modulating the cellular and biohumoral responses involved in VTE. In the frame of epidemiological evidence, this pilot study with a novel observational approach supports the notion that miRNA can be diagnostic biomarkers of VTE and first identifies miRNA 126 as a predictor of outcome, being associated with poor early recanalization.
Collapse
Affiliation(s)
- Pietro Rossetti
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Vittorio Pengo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Rosanna Vescovini
- Department of Clinical and Experimental Medicine, University Hospital of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Maria Ilaria Tassoni
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Maria Lombardi
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Pasquale Rubino
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Gino Bernuzzi
- Immunohematology and Transfusion Center, University Hospital of Parma, Parma, Italy
| | - Ignazio Verzicco
- Department of Clinical and Experimental Medicine, University Hospital of Parma, Parma, Italy
| | - Cesare Manotti
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Roberto Quintavalla
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
5
|
Wan T, Liu X, Su Y, Zou J, Wu X, Jiang C, Cao C, Yao M, Zhou Y, Rong L, Li B, Wen L, Feng Q. Biological differentiation of traditional Chinese medicine from excessive to deficient syndromes in AIDS: Comparative microRNA microarray profiling and syndrome-specific biomarker identification. J Med Virol 2021; 93:3634-3646. [PMID: 33289096 DOI: 10.1002/jmv.26704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied as a supplementary therapy of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) in China. TCM has a positive effect on improving the quality of life, prolonging life, and ameliorating the symptoms of HIV/AIDS patients. Yang deficiency of spleen and kidney (YDSK) syndrome is a typical deficient TCM syndrome in AIDS patients, and accumulation of heat-toxicity (AHT) syndrome is a common excessive syndrome in the earlier stage of AIDS. Thus, accurate diagnosis of these two syndromes can improve the targeted treatment effect, and predict the prognosis of the disease. However, the scientific basis of TCM syndromes remains lacking, greatly hindering the accuracy of diagnosis and effectiveness of treatment. In this research, microRNA (miRNA) microarray and quantitative real-time polymerase chain reaction combined with bioinformatics were used for comparative analysis between YDSK and AHT patients. Significantly differential expressed miRNAs (SDE-miRNAs) of each TCM syndrome were identified, including hsa-miR-766-3p and hsa-miR-1260a and so on, as well hsa-miR-6124, hsa-let-7g-5p and so on, for YDSK and AHT, respectively. Biological differences were found between their SDE-miRNAs based on bioinformatics analyses, for example, ErbB signaling pathway mainly linked to AHT, while focal adhesion dominated in YDSK. Syndrome-specific SDE-miRNAs were further identified as potential biomarkers, including hsa-miR-30e-5p, hsa-miR-144-5p for YDSK and hsa-let-7g-5p, hsa-miR-126-3p for AHT, respectively. All of them have laid biological and clinical bases for TCM diagnosis and treatment of AIDS syndrome at the miRNA level, offering potential diagnostic indicators of immune reconstitution.
Collapse
Affiliation(s)
- Tingjun Wan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiyang Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiaxi Zou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xi Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cen Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunhui Cao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingyue Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuyu Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Baixue Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Quansheng Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov 2021; 7:37. [PMID: 33627637 PMCID: PMC7904758 DOI: 10.1038/s41420-021-00418-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) encapsulated within exosomes can serve as essential regulators of intercellular communication and represent promising biomarkers of several aging-associated disorders. However, the relationship between exosomal miRNAs and osteoarthritis (OA)-related chondrocytes and synovial fibroblasts (SFCs) remain to be clarified. Herein, we profiled synovial fluid-derived exosomal miRNAs and explored the effects of exosomal miRNAs derived from SFCs on chondrocyte inflammation, proliferation, and survival, and further assessed their impact on cartilage degeneration in a surgically-induced rat OA model. We identified 19 miRNAs within synovial fluid-derived exosomes that were differentially expressed when comparing OA and control patients. We then employed a microarray-based approach to confirm that exosomal miRNA-126-3p expression was significantly reduced in OA patient-derived synovial fluid exosomes. At a functional level, miRNA-126-3p mimic treatment was sufficient to promote rat chondrocyte migration and proliferation while also suppressing apoptosis and IL-1β, IL-6, and TNF-α expression. SFC-miRNA-126-3p-Exos were able to suppress apoptotic cell death and associated inflammation in chondrocytes. Our in vivo results revealed that rat SFC-derived exosomal miRNA-126-3p was sufficient to suppress the formation of osteophytes, prevent cartilage degeneration, and exert anti-apoptotic and anti-inflammatory effects on articular cartilage. Overall, our findings indicate that SFC exosome‐delivered miRNA-126-3p can constrain chondrocyte inflammation and cartilage degeneration. As such, SFC-miRNA-126-3p-Exos may be of therapeutic value for the treatment of patients suffering from OA.
Collapse
|
7
|
Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother 2021; 136:111240. [PMID: 33454598 DOI: 10.1016/j.biopha.2021.111240] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) creates a multifaceted system for the interaction of diverse structural proteins, matricellular molecules, proteoglycans, hyaluronan, and various glycoproteins that collaborate and bind with each other to produce a bioactive polymer. Alterations in the composition and configuration of ECM elements influence the cellular phenotype, thus participating in the pathogenesis of several human disorders. Recent studies indicate the crucial roles of non-coding RNAs in the modulation of ECM. Several miRNAs such as miR-21, miR-26, miR-19, miR-140, miR-29, miR-30, miR-133 have been dysregulated in disorders that are associated with disruption or breakdown of the ECM. Moreover, expression of MALAT1, PVT1, SRA1, n379519, RMRP, PFL, TUG1, TM1P3, FAS-AS1, PART1, XIST, and expression of other lncRNAs is altered in disorders associated with the modification of ECM components. In the current review, we discuss the role of lncRNAs and miRNAs in the modification of ECM and their relevance with the pathophysiology of human disorders such as cardiac/ lung fibrosis, cardiomyopathy, heart failure, asthma, osteoarthritis, and cancers.
Collapse
|
8
|
Gao Z, Zhang J, Wu Y. TFAP2A inhibits microRNA-126 expression at the transcriptional level and aggravates ischemic neuronal injury. Biochem Cell Biol 2020; 99:403-413. [PMID: 33264079 DOI: 10.1139/bcb-2020-0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuronal injury induced by cerebral ischemia poses a serious health risk globally, and there is no effective clinical therapy. This study was performed to investigate the role of transcription factor AP-2 alpha (TFAP2A) in cerebral ischemia, and the underlying mechanisms, using an in-vitro model (PC-12 cells) of oxygen-glucose deprivation (OGD), and an in-vivo model (rat) of transient global cerebral ischemia (tGCI). The results for CCK-8 and Hoechst staining showed that silencing of TFAP2A enhanced the viability and decreased the rate of apoptosis of PC12 cells subjected to OGD. ChIP assays were performed to evaluate the binding of TFAP2A to the promoter region of microRNA (miR)-126, and we found that TFAP2A inhibits the expression of miR-126. Further mechanistic investigation revealed that miR-126 targets polo like kinase 2 (PLK2), and that overexpression of PLK2 activates the IκBα-NF-κB signaling pathway and suppresses the growth of PC12 cells subjected to OGD. For our in-vivo assay, we used TTC staining to analyze the infarction area in the brain tissues of rats, and Nissl staining to evaluate the number of surviving brain neurons. The pathological conditions associated with neuronal injury in rat brain tissues were assessed by staining the tissues with hematoxylin-eosin. Our results indicate that TFAP2A downregulates miR-126, and thereby upregulates PLK2 and activates the IκBα-NF-κB pathway, which increased neuronal injury following cerebral ischemia.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
9
|
miR-126a-3p induces proliferation, migration and invasion of trophoblast cells in pre-eclampsia-like rats by inhibiting A Disintegrin and Metalloprotease 9. Biosci Rep 2020; 39:221380. [PMID: 31789346 PMCID: PMC6923329 DOI: 10.1042/bsr20191271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the underlying mechanism of miR-126a-3p in the proliferation, migration and invasion of trophoblast cells in pre-eclampsia-like rats by targeting A Disintegrin and Metalloprotease 9 (ADAM9). First, the interaction between miR-126a-3p and ADAM9 was confirmed via biochemical assays. Placental tissues and trophoblast cells were then obtained. RNA in situ hybridization was performed in order to detect miR-126a-3p expression in the placenta. Subsequently, a series of biological assays, including reverse transcription-quantitative PCR (RT-qPCR), Western blotting, MTT assay, apoptosis assay, cell cycle assay, wound healing assay and transwell assay were adopted in order to determine the cell proliferation, cell cycle distribution, apoptotic rate, and migration and invasion of trophoblast cells in each group. The results revealed that miR-126a-3p was down-regulated in the placenta of pre-eclampsia-like rats. In vivo experiments’ results indicated that miR-126a-3p could inhibit ADAM9 expression, and induce cyclin D1, Matrix metalloproteinase (MMP) 2 (MMP-2), MMP-9 expression. MTT, apoptosis and cell cycle assay results revealed that trophoblast cells transfected with miR-126a-3p mimic or si-ADAM9 exhibited higher proliferative activity and a lower apoptotic rate compared with the blank group (all P<0.05). The wound healing assay and transwell assay results confirmed that, compared with the blank group, the migration and invasion ability of trophoblast cells in the miR-126a-3p mimic group and small interfering RNA (siRNA)-ADAM9 group were significantly increased (all P<0.05). Conversely, miR-126a-3p inhibitor treatment revealed the opposite effect (all P<0.05). In conclusion, the present study demonstrated that miR-126a-3p could enhance proliferation, migration and invasion, but decrease the apoptosis rate of trophoblast cells in pre-eclampsia-like rats through targeting ADAM9.
Collapse
|
10
|
Liu M, Yin Y, Yu H, Zhou R. Laminins Regulate Placentation and Pre-eclampsia: Focus on Trophoblasts and Endothelial Cells. Front Cell Dev Biol 2020; 8:754. [PMID: 32850857 PMCID: PMC7426496 DOI: 10.3389/fcell.2020.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
Pre-eclampsia is a systemic vascular disease characterized by new-onset hypertension and/or proteinuria at ≥20 weeks of gestation and leads to high rates of maternal and perinatal morbidity and mortality. Despite the incomplete understanding of pre-eclampsia pathophysiology, it is accepted that insufficient spiral artery remodeling and endothelial dysfunction are major contributors. Laminins (LNs) are a vital family of extracellular matrix (ECM) molecules present in basement membranes that provide unique spatial and molecular information to regulate implantation and placentation. LNs interact with cell surface receptors to trigger intracellular signals that affect cellular behavior. This mini-review summarizes the role of LNs in placental development during normal pregnancy. Moreover, it describes how LN deficiency can lead to the pre-eclampsia, which is associated with trophoblast and vascular endothelial dysfunction. New research directions and the prospect of clinical diagnosis of LN deficiency are discussed, and the gaps in basic and clinical research in this field are highlighted.
Collapse
Affiliation(s)
- Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hongbiao Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
11
|
Kong R, Gao J, Ji L, Zhao D. MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Cycle 2020; 19:2119-2138. [PMID: 32787491 DOI: 10.1080/15384101.2020.1788258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used for the treatment of inflammatory and immune diseases, and microRNA-126 (miR-126) is a critical regulator in inflammation as well as immunity. However, the mediating role of miR-126 in BMSCs is still not clear. Thus, this study aimed to preliminarily investigate the effect of miR-126 on proliferation, apoptosis, migration, invasion, differentiation, and its potential regulating pathways in BMSCs. Human BMSCs were obtained and infected with miR-126 overexpression lentivirus, control overexpression lentivirus, miR-126 knock-down lentivirus and control knock-down lentivirus, then cell functions, the PI3 K/AKT pathway and MEK1/ERK1 pathway were evaluated. Subsequently, PI3 K overexpression plasmid and MEK1 overexpression plasmid were transfected into BMSCs with miR-126 knockdown, then the cell functions were assessed as well. BMSCs with miR-126 overexpression displayed elevated proliferation, migration and invasion while decreased apoptosis; however, BMSCs with miR-126 knockdown presented with decreased proliferation, migration, invasion but increased apoptosis. As for differentiation, BMSCs with miR-126 overexpression showed higher levels of CD31, eNOS and VE-cadherin but lower expressions of ALP, OPN and RUNX2, while BMSCs with miR-126 knockdown disclosed the opposite results. Additionally, BMSCs with miR-126 overexpression showed elevated PI3 K, pAKT, MEK1 and pERK1 expressions, while BMSCs with miR-126 knockdown displayed opposite results. Furthermore, PI3 K overexpression and MEK1 overexpression both reversed the effects of miR-126 on cell functions in BMSCs. In conclusion, miR-126 is a genetic regulator in BMSCs via modulating multiple cell functions through the PI3 K/AKT and MEK1/ERK1 signaling pathways.
Collapse
Affiliation(s)
- Ruina Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Lianmei Ji
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| |
Collapse
|
12
|
Sabo AA, Birolo G, Naccarati A, Dragomir MP, Aneli S, Allione A, Oderda M, Allasia M, Gontero P, Sacerdote C, Vineis P, Matullo G, Pardini B. Small Non-Coding RNA Profiling in Plasma Extracellular Vesicles of Bladder Cancer Patients by Next-Generation Sequencing: Expression Levels of miR-126-3p and piR-5936 Increase with Higher Histologic Grades. Cancers (Basel) 2020; 12:cancers12061507. [PMID: 32527011 PMCID: PMC7352804 DOI: 10.3390/cancers12061507] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is the tenth most frequent cancer worldwide. Due to the need for recurrent cystoscopies and the lack of non-invasive biomarkers, BC is associated with a high management burden. In this respect, small non-coding RNAs (sncRNAs) have been investigated in urine as possible biomarkers for BC, but in plasma their potential has not yet been defined. The expression levels of sncRNAs contained in plasma extracellular vesicles (EVs) from 47 men with BC and 46 healthy controls were assessed by next-generation sequencing. The sncRNA profiles were compared with urinary profiles from the same subjects. miR-4508 resulted downregulated in plasma EVs of muscle-invasive BC patients, compared to controls (adj-p = 0.04). In World Health Organization (WHO) grade 3 (G3) BC, miR-126-3p was upregulated both in plasma EVs and urine, when compared to controls (for both, adj-p < 0.05). Interestingly, two sncRNAs were associated with the risk class: miR-4508 with a downward trend going from controls to high risk BC, and piR-hsa-5936 with an upward trend (adj-p = 0.04 and adj-p = 0.05, respectively). Additionally, BC cases with low expression of miR-185-5p and miR-106a-5p or high expression of miR-10b-5p showed shorter survival (adj-p = 0.0013, adj-p = 0.039 and adj-p = 0.047, respectively). SncRNAs from plasma EVs could be diagnostic biomarkers for BC, especially in advanced grade.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), 70174 Stuttgart, Germany;
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 041434 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania;
| | - Serena Aneli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Alessandra Allione
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Marco Oderda
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | - Marco Allasia
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | - Paolo Gontero
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
13
|
Zhou CF, Liu MJ, Wang W, Wu S, Huang YX, Chen GB, Liu LM, Peng DX, Wang XF, Cai XZ, Li XX, Feng WQ, Ma Y. miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res Ther 2019; 10:287. [PMID: 31547870 PMCID: PMC6757391 DOI: 10.1186/s13287-019-1388-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND miRNA expression profiles in ectopic endometrium (EC) serving as pathophysiologic genetic fingerprints contribute to determining endometriosis progression; however, the underlying molecular mechanisms remain unknown. METHODS miRNA microarray analysis was used to determine the expression profiling of EC fresh tissues. qRT-PCR was performed to screen miR-205-5p expression in EC tissues. The roles of miR-205-5p and its candidate target gene, angiopoietin-2 (ANGPT2), in endometriosis progression were confirmed on the basis of both in vitro and in vivo systems. miR-205-5p and ANGPT2 expression were measured by in situ hybridization and immunochemistry, and their clinical significance was statistically analysed. RESULTS miR-205-5p was screened as a novel suppressor of endometriosis through primary ectopic endometrial stromal cell migration, invasion, and apoptosis assay in vitro, along with endometrial-like xenograft growth and apoptosis in vivo. In addition, ANGPT2 was identified as a direct target of miR-205-5p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of ANGPT2 could respectively rescue and simulate the effects induced by miR-205-5p. Importantly, the miR-205-5p-ANGPT2 axis was found to activate the ERK/AKT pathway in endometriosis. Finally, miR-205-5p and ANGPT2 expression were closely correlated with the endometriosis severity. CONCLUSION The newly identified miR-205-5p-ANGPT2-AKT/ERK axis illustrates the molecular mechanism of endometriosis progression and may represent a novel diagnostic biomarker and therapeutic target for disease treatment.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Min-Juan Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Xin Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Guo-Bin Chen
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Li-Min Liu
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Dong-Xian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xue-Feng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xu-Zi Cai
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xiao-Xuan Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wan-Qin Feng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Fedoseeva LA, Klimov LO, Ershov NI, Efimov VM, Markel AL, Orlov YL, Redina OE. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics 2019; 20:297. [PMID: 32039698 PMCID: PMC7226933 DOI: 10.1186/s12864-019-5540-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.
Collapse
Affiliation(s)
- Larisa A. Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Leonid O. Klimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nikita I. Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Vadim M. Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L. Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
15
|
Nie X, Chen Y, Tan J, Dai Y, Mao W, Qin G, Ye S, Sun J, Yang Z, Chen J. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascul Pharmacol 2019; 116:24-35. [DOI: 10.1016/j.vph.2017.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
|
16
|
Das UN. Circulating MicroRNAs and Bioactive Lipids in Pre-Eclampsia and Its Cardiovascular Sequelae. Am J Hypertens 2018; 31:1079-1086. [PMID: 30052752 DOI: 10.1093/ajh/hpy117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, Washington, USA
- BioScience Research Centre, GVP College of Engineering Campus, Visakhapatnam, India
- Department of Medicine, GVP Hospital, Visakhapatnam, India
| |
Collapse
|
17
|
Hoye ML, Archambault AS, Gordon TM, Oetjen LK, Cain MD, Klein RS, Crosby SD, Kim BS, Miller TM, Wu GF. MicroRNA signature of central nervous system-infiltrating dendritic cells in an animal model of multiple sclerosis. Immunology 2018; 155:112-122. [PMID: 29749614 PMCID: PMC6099169 DOI: 10.1111/imm.12934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/28/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune cells are integral to the pathogenesis of several diseases of the central nervous system (CNS), including multiple sclerosis (MS). Dendritic cells (DCs) are potent CD11c+ antigen-presenting cells that are critical regulators of adaptive immune responses, particularly in autoimmune diseases such as MS. The regulation of DC function in both the periphery and CNS compartment has not been fully elucidated. One limitation to studying the role of CD11c+ DCs in the CNS is that microglia can upregulate CD11c during inflammation, making it challenging to distinguish bone marrow-derived DCs (BMDCs) from microglia. Selective expression of microRNAs (miRNAs) has been shown to distinguish populations of innate cells and regulate their function within the CNS during neuro-inflammation. Using the experimental autoimmune encephalomyelitis (EAE) murine model of MS, we characterized the expression of miRNAs in CD11c+ cells using a non-biased murine array. Several miRNAs, including miR-31, were enriched in CD11c+ cells within the CNS during EAE, but not LysM+ microglia. Moreover, to distinguish CD11c+ DCs from microglia that upregulate CD11c, we generated bone marrow chimeras and found that miR-31 expression was specific to BMDCs. Interestingly, miR-31-binding sites were enriched in mRNAs downregulated in BMDCs that migrated into the CNS, and a subset was confirmed to be regulated by miR-31. Finally, miR-31 was elevated in DCs migrating through an in vitro blood-brain barrier. Our findings suggest miRNAs, including miR-31, may regulate entry of DCs into the CNS during EAE, and could potentially represent therapeutic targets for CNS autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Mariah L. Hoye
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | | | - Taylor M. Gordon
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | - Landon K. Oetjen
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Matthew D. Cain
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Robyn S. Klein
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Seth D. Crosby
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Brian S. Kim
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
- Center for the Study of ItchWashington University School of MedicineSt LouisMOUSA
| | - Timothy M. Miller
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Gregory F. Wu
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
18
|
Kobori T, Hamasaki S, Kitaura A, Yamazaki Y, Nishinaka T, Niwa A, Nakao S, Wake H, Mori S, Yoshino T, Nishibori M, Takahashi H. Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Front Immunol 2018; 9:334. [PMID: 29559970 PMCID: PMC5845536 DOI: 10.3389/fimmu.2018.00334] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
M2 macrophage (Mφ) promotes pathologic angiogenesis through a release of pro-angiogenic mediators or the direct cell–cell interaction with endothelium in the micromilieu of several chronic inflammatory diseases, including rheumatoid arthritis and cancer, where interleukin (IL)-18 also contributes to excessive angiogenesis. However, the detailed mechanism remains unclear. The aim of this study is to investigate the mechanism by which M2 Mφs in the micromilieu containing IL-18 induce excessive angiogenesis in the in vitro experimental model using mouse Mφ-like cell line, RAW264.7 cells, and mouse endothelial cell line, b.End5 cells. We discovered that IL-18 acts synergistically with IL-10 to amplify the production of Mφ-derived mediators like osteopontin (OPN) and thrombin, yielding thrombin-cleaved form of OPN generation, which acts through integrins α4/α9, thereby augmenting M2 polarization of Mφ with characteristics of increasing surface CD163 expression in association with morphological alteration. Furthermore, the results of visualizing temporal behavior and morphological alteration of Mφs during angiogenesis demonstrated that M2-like Mφs induced excessive angiogenesis through the direct cell–cell interaction with endothelial cells, possibly mediated by CD163.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yui Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuko Niwa
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
19
|
Bluhm B, Ehlen HWA, Holzer T, Georgieva VS, Heilig J, Pitzler L, Etich J, Bortecen T, Frie C, Probst K, Niehoff A, Belluoccio D, Van den Bergen J, Brachvogel B. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage. Development 2017; 144:3562-3577. [PMID: 28851708 DOI: 10.1242/dev.148429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Abstract
Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development.
Collapse
Affiliation(s)
- Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Harald W A Ehlen
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50931, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne 50931, Germany
| | - Lena Pitzler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Toman Bortecen
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50931, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne 50931, Germany
| | - Daniele Belluoccio
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jocelyn Van den Bergen
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Pediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne 50931, Germany .,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
20
|
Abstract
Osteoarthritis (OA) is the most common age-related joint disorder in man. MicroRNAs (miRNA), a class of small noncoding RNAs, are potential therapeutic targets for regulating molecular mechanisms in both disease and ageing. Whilst there is an increasing amount of research on the roles of miRNAs in ageing, there has been scant research on age-related changes in miRNA in a cartilage. We undertook a microarray study on young and old human cartilages. Findings were validated in an independent cohort. Contrasts between these samples identified twenty differentially expressed miRNAs in a cartilage from old donors, derived from an OA environment which clustered based on OA severity. We identified a number of recognised and novel miRNAs changing in cartilage ageing and OA including miR-126: a potential new candidate with a role in OA pathogenesis. These analyses represent important candidates that have the potential as cartilage ageing and OA biomarkers and therapeutic targets.
Collapse
|
21
|
Auler M, Pitzler L, Pöschl E, Zhou Z, Brachvogel B. Mimicking Angiogenesis in vitro: Three-dimensional Co-culture of Vascular Endothelial Cells and Perivascular Cells in Collagen Type I Gels. Bio Protoc 2017; 7:e2247. [PMID: 34541239 DOI: 10.21769/bioprotoc.2247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 11/02/2022] Open
Abstract
Angiogenesis defines the process of formation of new vascular structures form existing blood vessels, involved during development, repair processes like wound healing but also linked to pathological changes. During angiogenic processes, endothelial cells build a vascular network and recruit perivascular cells to form mature, stable vessels. Endothelial cells and perivascular cells secret and assemble a vascular basement membrane and interact via close cell-cell contacts. To mimic these processes in vitro we have developed a versatile three-dimensional culture system where perivascular cells (PVC) are co-cultured with human umbilical cord vascular endothelial cells (HUVEC) in a collagen type I gel. This co-culture system can be used to determine biochemical and cellular processes during neoangiogenic events with a wide range of analyses options.
Collapse
Affiliation(s)
- Markus Auler
- Medical Faculty, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Cologne, Germany.,Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Lena Pitzler
- Medical Faculty, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Cologne, Germany.,Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ernst Pöschl
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Zhigang Zhou
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Medical Faculty, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bent Brachvogel
- Medical Faculty, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Cologne, Germany.,Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Etich J, Bergmeier V, Pitzler L, Brachvogel B. Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing. Connect Tissue Res 2017; 58:196-207. [PMID: 27386825 DOI: 10.1080/03008207.2016.1210606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. METHODS Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. RESULTS Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, RNU6B was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to Gapdh the normalization to multiple reference genes gave a similar outcome. CONCLUSION RNU6B is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.
Collapse
Affiliation(s)
- Julia Etich
- a Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty , University of Cologne , Cologne , Germany.,b Center for Biochemistry, Medical Faculty , University of Cologne , Cologne , Germany
| | - Vera Bergmeier
- a Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty , University of Cologne , Cologne , Germany.,b Center for Biochemistry, Medical Faculty , University of Cologne , Cologne , Germany
| | - Lena Pitzler
- a Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty , University of Cologne , Cologne , Germany.,b Center for Biochemistry, Medical Faculty , University of Cologne , Cologne , Germany
| | - Bent Brachvogel
- a Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty , University of Cologne , Cologne , Germany.,b Center for Biochemistry, Medical Faculty , University of Cologne , Cologne , Germany
| |
Collapse
|
23
|
Strassburg S, Nabar N, Lampert F, Goerke SM, Pfeifer D, Finkenzeller G, Stark GB, Simunovic F. Calmodulin Regulated Spectrin Associated Protein 1 mRNA is Directly Regulated by miR-126 in Primary Human Osteoblasts. J Cell Biochem 2017; 118:1756-1763. [DOI: 10.1002/jcb.25838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Sandra Strassburg
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Nikita Nabar
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Florian Lampert
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Sebastian M. Goerke
- Department of Radiology; Ortenau Klinikum Offenburg-Gengenbach; Offenburg Germany
| | - Dietmar Pfeifer
- Department of Hematology and Oncology; Freiburg University Medical Center; Freiburg 79106 Germany
| | - Günter Finkenzeller
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Gerhard B. Stark
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Filip Simunovic
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| |
Collapse
|
24
|
Li M, Ke QF, Tao SC, Guo SC, Rui BY, Guo YP. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B 2016; 4:6830-6841. [PMID: 32263577 DOI: 10.1039/c6tb01560c] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The exploration of an effective diabetic chronic wound healing process still remains a great challenge. Herein, we used gene overexpression technology to obtain synovial mesenchymal stem cells (SMSCs) and the miR-126-3p highly expressed SMSCs (SMSCs-126). The exosomes derived from miR-126-3p overexpressed SMSCs (SMSCs-126-Exos) with a particle size of 85 nm were encapsulated in hydroxyapatite/chitosan (HAP-CS) composite hydrogels (HAP-CS-SMSCs-126-Exos) as wound dressings. The SMSCs-126-Exos, CS and low-crystallinity HAP nanorods with a length of 200 nm and a diameter of 50 nm are uniformly dispersed within the whole composite hydrogel. The HAP-CS-SMSCs-126-Exos possess the controlled release property of SMSCs-126-Exos for at least 6 days. The released SMSCs-126-Exos nanoparticles stimulate the proliferation and migration of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1). At the same time, the migration and capillary-network formation of HMEC-1 are promoted through the activation of MAPK/ERK and PI3K/AKT. In vivo tests demonstrate that the HAP-CS-SMSCs-126-Exos successfully promote wound surface re-epithelialization, accelerate angiogenesis, and expedite collagen maturity due to the presence of HAP, CS and SMSCs-126-Exos. Therefore, the HAP-CS-SMSCs-126-Exos possess great potential application for diabetic chronic wound healing, and especially provide the possibility of using exosomes derived from modified cells as a new approach to bring wonderful functionality and controllability in future chronic wound therapy.
Collapse
Affiliation(s)
- Min Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | |
Collapse
|
25
|
Gao Y, Yin Y, Xing X, Zhao Z, Lu Y, Sun Y, Zhuang Z, Wang M, Ji W, He Y. Arsenic-induced anti-angiogenesis via miR-425-5p-regulated CCM3. Toxicol Lett 2016; 254:22-31. [DOI: 10.1016/j.toxlet.2016.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|