1
|
Dennhag N, Kahsay A, Nissen I, Nord H, Chermenina M, Liu J, Arner A, Liu JX, Backman LJ, Remeseiro S, von Hofsten J, Pedrosa Domellöf F. fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles. Nat Commun 2024; 15:1950. [PMID: 38431640 PMCID: PMC10908798 DOI: 10.1038/s41467-024-46187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Maria Chermenina
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jiao Liu
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anders Arner
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
| | - Jing-Xia Liu
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| | - Fatima Pedrosa Domellöf
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
3
|
Xiong Z, Wang M, Wu J, Shi X. Tceal7 Regulates Skeletal Muscle Development through Its Interaction with Cdk1. Int J Mol Sci 2023; 24:ijms24076264. [PMID: 37047236 PMCID: PMC10094454 DOI: 10.3390/ijms24076264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We have previously reported Tceal7 as a muscle-specific gene that represses myoblast proliferation and promotes myogenic differentiation. The regulatory mechanism of Tceal7 gene expression has been well clarified recently. However, the underlying mechanism of Tceal7 function in skeletal muscle development remains to be elucidated. In the present study, we have generated an MCK 6.5 kb-HA-Tceal7 transgenic model. The transgenic mice are born normally, while they have displayed defects in the growth of body weight and skeletal muscle myofiber during postnatal development. Although four RxL motifs have been identified in the Tceal7 protein sequence, we have not detected any direct protein-protein interaction between Tceal7 and Cyclin A2, Cyclin B1, Cylin D1, or Cyclin E1. Further analysis has revealed the interaction between Tceal7 and Cdk1 instead of Cdk2, Cdk4, or Cdk6. Transgenic overexpression of Tceal7 reduces phosphorylation of 4E-BP1 Ser65, p70S6K1 Thr389, and Cdk substrates in skeletal muscle. In summary, these studies have revealed a novel mechanism of Tceal7 in skeletal muscle development.
Collapse
|
4
|
Yu M, Yu H, Mu N, Wang Y, Ma H, Yu L. The Function of FoxK Transcription Factors in Diseases. Front Physiol 2022; 13:928625. [PMID: 35903069 PMCID: PMC9314541 DOI: 10.3389/fphys.2022.928625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Forkhead box (FOX) transcription factors play a crucial role in the regulation of many diseases, being an evolutionarily conserved superfamily of transcription factors. In recent years, FoxK1/2, members of its family, has been the subject of research. Even though FoxK1 and FoxK2 have some functional overlap, increasing evidence indicates that the regulatory functions of FoxK1 and FoxK2 are not the same in various physiological and disease states. It is important to understand the biological function and mechanism of FoxK1/2 for better understanding pathogenesis of diseases, predicting prognosis, and finding new therapeutic targets. There is, however, a lack of comprehensive and systematic analysis of the similarities and differences of FoxK1/2 roles in disease, prompting us to perform a literature review.
Collapse
Affiliation(s)
- Mujun Yu
- School of Life Sciences, Yan'an University, Yan'an, China
| | - Haozhen Yu
- School of Basic Medical Sciences, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Li C, Shen H, Liu M, Li S, Luo Y. Natural antisense RNA Foxk1-AS promotes myogenic differentiation by inhibiting Foxk1 activity. Cell Commun Signal 2022; 20:77. [PMID: 35642035 PMCID: PMC9158385 DOI: 10.1186/s12964-022-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Natural antisense RNAs are RNA molecules that are transcribed from the opposite strand of either protein-coding or non-protein coding genes and have the ability to regulate the expression of their sense gene or several related genes. However, the roles of natural antisense RNAs in the maintenance and myogenesis of muscle stem cells remain largely unexamined. Methods We analysed myoblast differentiation and regeneration by overexpression and knockdown of Foxk1-AS using lentivirus and adeno-associated virus infection in C2C12 cells and damaged muscle tissues. Muscle injury was induced by BaCl2 and the regeneration and repair of damaged muscle tissues was assessed by haematoxylin–eosin staining and quantitative real-time PCR. The expression of myogenic differentiation-related genes was verified via quantitative real-time PCR, Western blotting and immunofluorescence staining. Results We identified a novel natural antisense RNA, Foxk1-AS, which is transcribed from the opposite strand of Foxk1 DNA and completely incorporated in the 3′ UTR of Foxk1. Foxk1-AS targets Foxk1 and functions as a regulator of myogenesis. Overexpression of Foxk1-AS strongly inhibited the expression of Foxk1 in C2C12 cells and in tibialis anterior muscle tissue and promoted myoblast differentiation and the regeneration of muscle fibres damaged by BaCl2. Furthermore, overexpression of Foxk1-AS promoted the expression of Mef2c, which is an important transcription factor in the control of muscle gene expression and is negatively regulated by Foxk1. Conclusion The results indicated that Foxk1-AS represses Foxk1, thereby rescuing Mef2c activity and promoting myogenic differentiation of C2C12 cells and regeneration of damaged muscle fibres. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00896-2.
Collapse
Affiliation(s)
- Chun Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Hao Shen
- School of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Meng Liu
- School of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
6
|
miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes (Basel) 2022; 13:genes13060947. [PMID: 35741709 PMCID: PMC9223022 DOI: 10.3390/genes13060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNAs, especially microRNAs (miRNAs), play an important role in skeletal muscle growth and development. miR-377 regulates many basic biological processes and plays a key role in tumor cell proliferation, migration and apoptosis. Nevertheless, the function of miR-377 during skeletal muscle development and how it regulates skeletal muscle satellite cells (SMSCs) remains unclear. In the present study, we proposed to elucidate the regulatory mechanism of miR-377 in the proliferation and differentiation of bovine primary SMSCs. Our results showed that miR-377 can significantly inhibit the proliferation of SMSCs. In addition, we found that miR-377 can reduce myotube formation and restrain skeletal myogenic differentiation. Moreover, the results obtained from the biosynthesis and dual luciferase experiments showed that FHL2 was the target gene of miR-377. We further probed the function of FHL2 in muscle development and found that FHL2 silencing significantly suppressed the proliferation and differentiation of SMSCS, which is contrary to the role of miR-377. Furthermore, FHL2 interacts with Dishevelled-2 (Dvl2) to enable Wnt/β-catenin signaling pathway, consequently regulating skeletal muscle development. miR-377 negatively regulates the Wnt/β-catenin signaling pathway by targeting FHL2-mediated Dvl2. Overall, these findings demonstrated that miR-377 regulates the bovine SMSCs proliferation and differentiation by targeting FHL2 and attenuating the Wnt/β-catenin signaling pathway.
Collapse
|
7
|
Xiong Z, Wang M, You S, Chen X, Lin J, Wu J, Shi X. Transcription Regulation of Tceal7 by the Triple Complex of Mef2c, Creb1 and Myod. BIOLOGY 2022; 11:biology11030446. [PMID: 35336819 PMCID: PMC8945367 DOI: 10.3390/biology11030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We have previously reported a striated muscle-specific gene during embryogenesis, Tceal7. Our studies have characterized the 0.7 kb promoter of the Tceal7 gene, which harbors important E-box motifs driving the LacZ reporter in the myogenic lineage. However, the underlying mechanism regulating the dynamic expression of Tceal7 during skeletal muscle regeneration is still elusive. In the present work, we have defined a cluster of Mef2#3–CRE#3–E#4 motifs through bioinformatic analysis and transcription assays. Our studies suggested that the triple complex of Mef2c, Creb1 and Myod binds to the Mef2#3–CRE#3–E#4 cluster region, therefore driving the dynamic expression of Tceal7 during skeletal muscle regeneration. The novel mechanism may throw new light on understanding transcription regulation in skeletal muscle myogenesis. Abstract Tceal7 has been identified as a direct, downstream target gene of MRF in the skeletal muscle. The overexpression of Tceal7 represses myogenic proliferation and promotes cell differentiation. Previous studies have defined the 0.7 kb upstream fragment of the Tceal7 gene. In the present study, we have further determined two clusters of transcription factor-binding motifs in the 0.7 kb promoter: CRE#2–E#1–CRE#1 in the proximal region and Mef2#3–CRE#3–E#4 in the distal region. Utilizing transcription assays, we have also shown that the reporter containing the Mef2#3–CRE#3–E#4 motifs is synergistically transactivated by Mef2c and Creb1. Further studies have mapped out the protein–protein interaction between Mef2c and Creb1. In summary, our present studies support the notion that the triple complex of Mef2c, Creb1 and Myod interacts with the Mef2#3–CRE#3–E#4 motifs in the distal region of the Tceal7 promoter, thereby driving Tceal7 expression during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Mengni Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Shanshan You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaoyan Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jianhua Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaozhong Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
- Correspondence: ; Tel.: +86-20-39380620
| |
Collapse
|
8
|
Garry DJ, Maeng G, Garry MG. Foxk1 regulates cancer progression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1041. [PMID: 33145260 PMCID: PMC7575999 DOI: 10.21037/atm-2020-94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Geunho Maeng
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mary G Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X, Chen J. FOXK1 Participates in DNA Damage Response by Controlling 53BP1 Function. Cell Rep 2020; 32:108018. [PMID: 32783940 PMCID: PMC7458625 DOI: 10.1016/j.celrep.2020.108018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
53BP1 plays a central role in dictating DNA repair choice between non-homologous end joining (NHEJ) and homologous recombination (HR), which is important for the sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPis) of BRCA1-deficient cancers. In this study, we show that FOXK1 associates with 53BP1 and regulates 53BP1-dependent functions. FOXK1-53BP1 interaction is significantly enhanced upon DNA damage during the S phase in an ATM/CHK2-dependent manner, which reduces the association of 53BP1 with its downstream factors RIF1 and PTIP. Depletion of FOXK1 impairs DNA repair and induces compromised cell survival upon DNA damage. Overexpression of FOXK1 diminishes 53BP1 foci formation, which leads to resistance to PARPis and elevation of HR in BRCA1-deficient cells and decreased telomere fusion in TRF2-depleted cells. Collectively, our findings demonstrate that FOXK1 negatively regulates 53BP1 function by inhibiting 53BP1 localization to sites of DNA damage, which alters the DSB-induced protein complexes centering on 53BP1 and thus influences DNA repair choice.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Zhu CC, Kang HF, Qiu JW, Qian JB, Liu HB, Zhang DM. Role of FHL2 in digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2019; 27:1083-1087. [DOI: 10.11569/wcjd.v27.i17.1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FHL2 is a scaffold protein that regulates signal transduction and gene transcription, and it has typical structural features of FHL proteins. Each FHL protein contains four half-LIM domains, and different LIM domains can bind to different proteins, which can activate or inhibit the activities of transcription factors such as P53 and serum response factors, and then influences the development of tumors. Previous studies have found that FHL2 has a complex biological role in tumorigenesis, and may promote or suppress tumor development in different types of tumors. In this article, we review the role of FHL2 in digestive system malignancies.
Collapse
Affiliation(s)
- Cui-Cui Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Hai-Feng Kang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Jian-Wei Qiu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Jun-Bo Qian
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Hong-Bin Liu
- Department of Pathology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Dong-Mei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
11
|
Wang L, Liu Q, Kitamoto T, Hou J, Qin J, Accili D. Identification of Insulin-Responsive Transcription Factors That Regulate Glucose Production by Hepatocytes. Diabetes 2019; 68:1156-1167. [PMID: 30936148 PMCID: PMC6610019 DOI: 10.2337/db18-1236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Abstract
Hepatocyte glucose production is a complex process that integrates cell-autonomous mechanisms with cellular signaling, enzyme activity modulation, and gene transcription. Transcriptional mechanisms controlling glucose production are redundant and involve nuclear hormone receptors and unliganded transcription factors (TFs). Our knowledge of this circuitry is incomplete. Here we used DNA affinity purification followed by mass spectrometry to probe the network of hormone-regulated TFs by using phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase (G6pc) in liver and primary hepatocytes as model systems. The repertoire of insulin-regulated TFs is unexpectedly broad and diverse. Whereas in liver the two test promoters are regulated by largely overlapping sets of TFs, in primary hepatocytes Pck1 and G6pc regulation diverges. Insulin treatment preferentially results in increased occupancy by the two promoters, consistent with a model in which the hormone's primary role is to recruit corepressors rather than to clear activators. Nine insulin-responsive TFs are present in both models, but only FoxK1, FoxA2, ZFP91, and ZHX3 require an intact Pck1p insulin response sequence for binding. Knockdown of FoxK1 in primary hepatocytes decreased both glucose production and insulin's ability to suppress it. The findings expand the repertoire of insulin-dependent TFs and identify FoxK1 as a contributor to insulin signaling.
Collapse
Affiliation(s)
- Liheng Wang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Qiongming Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences, Beijing, China
| | - Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Junjie Hou
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences, Beijing, China
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
12
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Lorda‐Diez C, Montero J, Sanchez‐Fernandez C, Garcia‐Porrero J, Chimal‐Monroy J, Hurle J. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors. J Tissue Eng Regen Med 2018; 12:e2062-e2072. [DOI: 10.1002/term.2637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- C.I. Lorda‐Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - C. Sanchez‐Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Garcia‐Porrero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J. Chimal‐Monroy
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de Mexico Mexico
| | - J.M. Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| |
Collapse
|
14
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|
15
|
Xu H, Huang S, Zhu X, Zhang W, Zhang X. FOXK1 promotes glioblastoma proliferation and metastasis through activation of Snail transcription. Exp Ther Med 2018; 15:3108-3116. [PMID: 29456714 DOI: 10.3892/etm.2018.5732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/09/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box K1 (FOXK1) has been identified to have a crucial function in development and oncogenesis. However, its role in glioblastoma has remained largely elusive and was therefore assessed in the present study. In human glioblastoma multiforme (GBM) tissue samples, FOXK1 was determined to be highly expressed compared with adjacent normal tissue samples. In addition, high levels of FOXK1 were detected in the T98G and LN18 GBM cell lines as compare with those in normal human astrocytes. Of note, high expression of FOXK1 was revealed to be associated with metastasis and tumor size. Loss- and gain-of-function experiments were then performed to determine whether FOXK1 regulates epithelial to mesenchymal transition (EMT) and cell proliferation. Knockdown of FOXK1 significantly suppressed EMT and metastasis of GBM cells, while ectopic expression of FOXK1 promoted them. A luciferase reporter assay and a chromatin immunoprecipitation assay revealed that FOXK1 activated the transcription of Snail. In addition, as the results indicated that FOXK1 promotes GBM cell proliferation, the potential effect of FOXK1 on the cell cycle and apoptosis were further assessed. While FOXK1 had no effect on apoptosis, it promoted cell proliferation via enhancing the S-phase population. In brief, the present study indicated that FOXK1 acts as an oncogene with a key function in glioblastoma cell proliferation and EMT.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shulan Huang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaonan Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wangcheng Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangyang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Wu M, Wang J, Tang W, Zhan X, Li Y, Peng Y, Huang X, Bai Y, Zhao J, Li A, Chen C, Chen Y, Peng H, Ren Y, Li G, Liu S, Wang J. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer. Oncogenesis 2016; 5:e271. [PMID: 27892920 PMCID: PMC5141290 DOI: 10.1038/oncsis.2016.68] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
The transcriptional factor Forkhead box k1 (FOXK1) is a member of the FOX family. The abnormal expression of FOXK1 may have an important role in tumour development. Our previous studies showed that four-and-a-half LIM protein 2 (FHL2) is a critical inducer of the epithelial-to-mesenchymal transition (EMT) and invasion. However, the molecular mechanism by which FOXK1 synergizes with FHL2 tumour proliferation, EMT and metastasis is not well defined. We evaluated that messenger RNA (mRNA) and protein expression levels by quantitative RT–PCR, western blot, immunofluorescence and immunohistochemistry (IHC) assays. The migration and invasive abilities of colorectal cancer (CRC) cells were evaluated using short hairpin RNA (shRNA)-mediated inhibition in vitro and in vivo. We showed that FOXK1 expression was upregulated in CRC compared with matched normal tissues. FOXK1 physically interacts with FHL2 in CRC. Moreover, higher expression levels of the two proteins were significantly associated with differentiation, lymph node metastasis, AJCC stage and poorer prognosis. Furthermore, the overexpression of FOXK1 in CRC cells is associated with EMT, invasion and metastasis. However, the siRNA-mediated repression of FHL2 in FOXK1-overexpressing cells reversed EMT and both the proliferative and metastatic phenotypes in vitro and in vivo. These data identified that the co-expression of FOXK1 and FHL2 enhances cell proliferation and metastasis through the induction of EMT. Thus, FOXK1 and FHL2 may serve as putative targets in the combined therapy of CRC.
Collapse
Affiliation(s)
- M Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Zhan
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - A Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - C Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - H Peng
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Y Ren
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - G Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2. Oncogene 2015; 35:4141-8. [DOI: 10.1038/onc.2015.481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/19/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022]
|
18
|
Gong W, Gohla RM, Bowlin KM, Koyano-Nakagawa N, Garry DJ, Shi X. Kelch Repeat and BTB Domain Containing Protein 5 (Kbtbd5) Regulates Skeletal Muscle Myogenesis through the E2F1-DP1 Complex. J Biol Chem 2015; 290:15350-61. [PMID: 25940086 DOI: 10.1074/jbc.m114.629956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
We have previously isolated a muscle-specific Kelch gene, Kelch repeat and BTB domain containing protein 5 (Kbtbd5)/Kelch-like protein 40 (Klhl40). In this report, we identified DP1 as a direct interacting factor for Kbtbd5 using a yeast two-hybrid screen and in vitro binding assays. Our studies demonstrate that Kbtbd5 interacts and regulates the cytoplasmic localization of DP1. GST pulldown assays demonstrate that the dimerization domain of DP1 interacts with all three of the Kbtbd5 domains. We further show that Kbtbd5 promotes the ubiquitination and degradation of DP1, thereby inhibiting E2F1-DP1 activity. To investigate the in vivo function of Kbtbd5, we used gene disruption technology and engineered Kbtbd5 null mice. Targeted deletion of Kbtbd5 resulted in postnatal lethality. Histological studies reveal that the Kbtbd5 null mice have smaller muscle fibers, a disorganized sarcomeric structure, increased extracellular matrix, and decreased numbers of mitochondria compared with wild-type controls. RNA sequencing and quantitative PCR analyses demonstrate the up-regulation of E2F1 target apoptotic genes (Bnip3 and p53inp1) in Kbtbd5 null skeletal muscle. Consistent with these observations, the cellular apoptosis in Kbtbd5 null mice was increased. Breeding of Kbtbd5 null mouse into the E2F1 null background rescues the lethal phenotype of the Kbtbd5 null mice but not the growth defect. The expression of Bnip3 and p53inp1 in Kbtbd5 mutant skeletal muscle are also restored to control levels in the E2F1 null background. In summary, our studies demonstrate that Kbtbd5 regulates skeletal muscle myogenesis through the regulation of E2F1-DP1 activity.
Collapse
Affiliation(s)
- Wuming Gong
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| | - Rachel M Gohla
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| | - Kathy M Bowlin
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| | - Daniel J Garry
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| | - Xiaozhong Shi
- From the Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis Minnesota 55455
| |
Collapse
|
19
|
FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia 2014; 29:615-24. [PMID: 25179730 PMCID: PMC4346553 DOI: 10.1038/leu.2014.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022]
Abstract
FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies.
Collapse
|
20
|
Renger A, Zafiriou MP, Noack C, Pavlova E, Becker A, Sharkova K, Bergmann MW, El-Armouche A, Zimmermann WH, Zelarayán LC. The four and a half LIM-domain 2 controls early cardiac cell commitment and expansion via regulating β-catenin-dependent transcription. Stem Cells 2014; 31:928-40. [PMID: 23341242 PMCID: PMC3744766 DOI: 10.1002/stem.1332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/21/2012] [Indexed: 12/13/2022]
Abstract
The multiphasic regulation of the Wnt/β-catenin canonical pathway is essential for cardiogenesis in vivo and in vitro. To achieve tight regulation of the Wnt/β-catenin signaling, tissue- and cell-specific coactivators and repressors need to be recruited. The identification of such factors may help to elucidate mechanisms leading to enhanced cardiac differentiation efficiency in vitro as well as promote regeneration in vivo. Using a yeast-two-hybrid screen, we identified four-and-a-half-LIM-domain 2 (FHL2) as a cardiac-specific β-catenin interaction partner and activator of Wnt/β-catenin-dependent transcription. We analyzed the role of this interaction for early cardiogenesis in an in vitro model by making use of embryoid body cultures from mouse embryonic stem cells (ESCs). In this model, stable FHL2 gain-of-function promoted mesodermal cell formation and cell proliferation while arresting cardiac differentiation in an early cardiogenic mesodermal progenitor state. Mechanistically, FHL2 overexpression enhanced nuclear accumulation of β-catenin and activated Wnt/β-catenin-dependent transcription leading to sustained upregulation of the early cardiogenic gene Igfbp5. In an alternative P19 cell model, transient FHL2 overexpression led to early activation of Wnt/β-catenin-dependent transcription, but not sustained high-level of Igfbp5 expression. This resulted in enhanced cardiogenesis. We propose that early Wnt/β-catenin-dependent transcriptional activation mediated by FHL2 is important for the transition to and expansion of early cardiogenic mesodermal cells. Collectively, our findings offer mechanistic insight into the early cardiogenic code and may be further exploited to enhance cardiac progenitor cell activity in vitro and in vivo.
Collapse
Affiliation(s)
- Anke Renger
- Department of Pharmacology and, Heart Research Center Göttingen (HRCG), University Medical Center-Georg-August-University-Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014; 71:1657-71. [PMID: 24232446 PMCID: PMC11113648 DOI: 10.1007/s00018-013-1513-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Forkhead box class O family member proteins (FoxOs) are highly conserved transcription factors with important roles in cellular homeostasis. The four FoxO members in humans, FoxO1, FoxO3, FoxO4, and FoxO6, are all expressed in skeletal muscle, but the first three members are the most studied in muscle. In this review, we detail the multiple modes of FoxO regulation and discuss the central role of these proteins in the control of skeletal muscle plasticity. FoxO1 and FoxO3 are key factors of muscle energy homeostasis through the control of glycolytic and lipolytic flux, and mitochondrial metabolism. They are also key regulators of protein breakdown, as they modulate the activity of several actors in the ubiquitin–proteasome and autophagy–lysosomal proteolytic pathways, including mitochondrial autophagy, also called mitophagy. FoxO proteins have also been implicated in the regulation of the cell cycle, apoptosis, and muscle regeneration. Depending of their activation level, FoxO proteins can exhibit ambivalent functions. For example, a basal level of FoxO factors is necessary for cellular homeostasis and these proteins are required for adaptation to exercise. However, exacerbated activation may occur in the course of several diseases, resulting in metabolic disorders and atrophy. A better understanding of the precise functions of these transcriptions factors should thus lead to the development of new therapeutic approaches to prevent or limit the muscle wasting that prevails in numerous pathological states, such as immobilization, denervated conditions, neuromuscular disease, aging, AIDS, cancer, and diabetes.
Collapse
Affiliation(s)
- Anthony M. J. Sanchez
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Robin B. Candau
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
22
|
Bowlin KM, Embree LJ, Garry MG, Garry DJ, Shi X. Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage. Differentiation 2013; 86:184-91. [DOI: 10.1016/j.diff.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/04/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
|
23
|
The transcription factor Foxk1 is expressed in developing and adult mouse neuroretina. Gene Expr Patterns 2013; 13:280-6. [DOI: 10.1016/j.gep.2013.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/27/2022]
|
24
|
Foxk1 recruits the Sds3 complex and represses gene expression in myogenic progenitors. Biochem J 2012; 446:349-57. [PMID: 22716292 DOI: 10.1042/bj20120563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies have established that Foxk1 (forkhead box k1) plays an important role in skeletal muscle regeneration. Foxk1 regulates the cell-cycle progression of myogenic progenitors by repressing the cell-cycle inhibitor gene p21. However, the underlying mechanism is not well understood. In the present study, we report the identification of Sds3 (suppressor of defective silencing 3) as an adaptor protein that recruits the Sin3 [SWI (switch)-independent 3]-HDAC (histone deacetylase) repression complex and binds Foxk1. Using GST (glutathione transferase) pull-down assays, we defined the interaction between the Foxk1 FHA (forkhead-associated domain) domain and phospho-Thr(49) in Sds3. We demonstrated that the transcriptional repression of Foxk1 is dependent on the Sin3-Sds3 repression complex, and knockdown of Sds3 results in cell-cycle arrest. We further identified the protein kinase CK2 as the protein kinase for Sds3 Thr(49) and demonstrated that the protein kinase activity of CK2 is required for proper cell-cycle progression. Analysis of CK2 mutant mice reveals perturbation of skeletal muscle regeneration due to the dysregulation of cell-cycle kinetics. Overall, these studies define a CK2-Sds3-Foxk1 cascade that modulates gene expression and regulates skeletal muscle regeneration.
Collapse
|
25
|
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012; 125:5329-37. [PMID: 22956541 DOI: 10.1242/jcs.105239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shi X, Garry DJ. Sin3 interacts with Foxk1 and regulates myogenic progenitors. Mol Cell Biochem 2012; 366:251-8. [PMID: 22476904 DOI: 10.1007/s11010-012-1302-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/17/2012] [Indexed: 12/01/2022]
Abstract
We have previously reported Foxk1 as an important transcription factor in the myogenic progenitors. SWI-independent-3 (Sin3) has been identified as a Foxk1 binding candidate using a yeast two-hybrid screen. In the present study, we have identified the Foxk1 N-terminal (1-40) region as the Sin3 interacting domain (SID), and the PAH2 of Sin3 as the Foxk1 binding domain utilizing yeast two-hybrid and GST pull-down assays. Further studies revealed that knockdown of Sin3a or Sin3b results in cell cycle arrest and upregulation of cell cycle inhibitor genes. In summary, our present studies have shown that Foxk1 interacts with Sin3 through the SID and that Sin3 has an important role in the regulation of cell cycle kinetics of the MPC population. The results of these studies continue to define and assemble the networks that regulate the MPCs and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, 4-108 NHH, 312 Church St SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
27
|
Yousef AF, Fonseca GJ, Cohen MJ, Mymryk JS. The C-terminal region of E1A: a molecular tool for cellular cartography. Biochem Cell Biol 2012; 90:153-63. [DOI: 10.1139/o11-080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The adenovirus E1A proteins function via protein–protein interactions. By making many connections with the cellular protein network, individual modules of this virally encoded hub reprogram numerous aspects of cell function and behavior. Although many of these interactions have been thoroughly studied, those mediated by the C-terminal region of E1A are less well understood. This review focuses on how this region of E1A affects cell cycle progression, apoptosis, senescence, transformation, and conversion of cells to an epithelial state through interactions with CTBP1/2, DYRK1A/B, FOXK1/2, and importin-α. Furthermore, novel potential pathways that the C-terminus of E1A influences through these connections with the cellular interaction network are discussed.
Collapse
Affiliation(s)
- Ahmed F. Yousef
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Gregory J. Fonseca
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Michael J. Cohen
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Joe S. Mymryk
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| |
Collapse
|
28
|
Rafael MS, Laizé V, Bensimon-Brito A, Leite RB, Schüle R, Cancela ML. Four-and-a-half LIM domains protein 2 (FHL2) is associated with the development of craniofacial musculature in the teleost fish Sparus aurata. Cell Mol Life Sci 2012; 69:423-34. [PMID: 21739231 PMCID: PMC11115147 DOI: 10.1007/s00018-011-0754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 01/08/2023]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is involved in major cellular mechanisms such as regulation of gene transcription and cytoskeleton modulation, participating in physiological control of cardiogenesis and osteogenesis. Knowledge on underlying mechanisms is, however, limited. We present here new data on FHL2 protein and its role during vertebrate development using a marine teleost fish, the gilthead seabream (Sparus aurata L.). In silico comparison of vertebrate protein sequences and prediction of LIM domain three-dimensional structure revealed a high degree of conservation, suggesting a conserved function throughout evolution. Determination of sites and levels of FHL2 gene expression in seabream indicated a central role for FHL2 in the development of heart and craniofacial musculature, and a potential role in tissue calcification. Our data confirmed the key role of FHL2 protein during vertebrate development and gave new insights into its particular involvement in craniofacial muscle development and specificity for slow fibers.
Collapse
Affiliation(s)
- Marta S. Rafael
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anabela Bensimon-Brito
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo B. Leite
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Roland Schüle
- Department of Urology/Women’s Hospital and Center for Clinical Research, University of Freiburg Medical Center, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
29
|
Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJM. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 2011; 286:44336-43. [PMID: 22049082 DOI: 10.1074/jbc.m111.308999] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys 2011; 60:3-11. [PMID: 21484256 DOI: 10.1007/s12013-011-9184-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BRCA1-associated protein-1 (BAP1) is a 729 residue, nuclear-localized deubiquitinating enzyme (DUB) that displays tumor suppressor properties in the BAP1-null NCI-H226 lung carcinoma cell line. Studies that have altered BAP1 cellular levels or enzymatic activity have reported defects in cell cycle progression, notably at the G1/S transition. Recently BAP1 was shown to associate with the transcriptional regulator host cell factor 1 (HCF-1). The BAP1/HCF-1 interaction is mediated by the HCF-1 Kelch domain and an HCF-1 binding motif (HBM) within BAP1. HCF-1 is modified with ubiquitin in vivo, and ectopic studies suggest BAP1 deubiquitinates HCF-1. HCF-1 is a chromatin-associated protein thought to both activate and repress transcription by linking appropriate histone-modifying enzymes to a subset of transcription factors. One known role of HCF-1 is to promote cell cycle progression at the G1/S boundary by recruiting H3K4 histone methyltransferases to the E2F1 transcription factor so that genes required for S-phase can be transcribed. Given the robust associations between BAP1/HCF-1 and HCF-1/E2Fs, it is reasonable to speculate that BAP1 influences cell proliferation at G1/S by co-regulating transcription from HCF-1/E2F-governed promoters.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
31
|
Razidlo GL, Katafiasz D, Taylor GS. Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 2011; 286:20005-19. [PMID: 21478156 DOI: 10.1074/jbc.m110.197749] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotubularin is a 3-phosphoinositide phosphatase that is mutated in X-linked myotubular myopathy, a severe neonatal disorder in which skeletal muscle development and/or regeneration is impaired. In this report we provide evidence that siRNA-mediated silencing of myotubularin expression markedly inhibits growth factor-stimulated Akt phosphorylation, leading to activation of caspase-dependent pro-apoptotic signaling in HeLa cells and primary human skeletal muscle myotubes. Myotubularin silencing also inhibits Akt-dependent signaling through the mammalian target of rapamycin complex 1 as assessed by p70 S6-kinase and 4E-BP1 phosphorylation. Similarly, phosphorylation of FoxO transcription factors is also significantly reduced in myotubularin-deficient cells. Our data further suggest that inhibition of Akt activation and downstream survival signaling in myotubularin-deficient cells is caused by accumulation of the MTMR substrate lipid phosphatidylinositol 3-phosphate generated from the type II phosphatidylinositol 3-kinase PIK3C2B. Our findings are significant because they suggest that myotubularin regulates Akt activation via a cellular pool of phosphatidylinositol 3-phosphate that is distinct from that generated by the type III phosphatidylinositol 3-kinase hVps34. Because impaired Akt signaling has been tightly linked to skeletal muscle atrophy, we hypothesize that loss of Akt-dependent growth/survival cues due to impaired myotubularin function may be a critical factor underlying the severe skeletal muscle atrophy characteristic of muscle fibers in patients with X-linked myotubular myopathy.
Collapse
Affiliation(s)
- Gina L Razidlo
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|
32
|
Abstract
Myoglobin is a well-characterized, cytoplasmic hemoprotein that is expressed primarily in cardiomyocytes and oxidative skeletal muscle fibers. However, recent studies also suggest low-level myoglobin expression in various non-muscle tissues. Prior studies incorporating molecular, pharmacological, physiological and transgenic technologies have demonstrated that myoglobin is an essential oxygen-storage hemoprotein capable of facilitating oxygen transport and modulating nitric oxide homeostasis within cardiac and skeletal myocytes. Concomitant with these studies, scientific investigations into the transcriptional regulation of myoglobin expression have been undertaken. These studies have indicated that activation of key transcription factors (MEF2, NFAT and Sp1) and co-activators (PGC-1alpha) by locomotor activity, differential intracellular calcium fluxes and low intracellular oxygen tension collectively regulate myoglobin expression. Future studies focused on tissue-specific transcriptional regulatory pathways and post-translational modifications governing myoglobin expression will need to be undertaken. Finally, further studies investigating the modulation of myoglobin expression under various myopathic processes may identify myoglobin as a novel therapeutic target for the treatment of various cardiac and skeletal myopathies.
Collapse
Affiliation(s)
- Shane B Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|