1
|
Pletcher A, Shibata M. Prostate organogenesis. Development 2022; 149:275758. [DOI: 10.1242/dev.200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Prostate organogenesis begins during embryonic development and continues through puberty when the prostate becomes an important exocrine gland of the male reproductive system. The specification and growth of the prostate is regulated by androgens and is largely a result of cell-cell communication between the epithelium and mesenchyme. The fields of developmental and cancer biology have long been interested in prostate organogenesis because of its relevance for understanding prostate diseases, and research has expanded in recent years with the advent of novel technologies, including genetic-lineage tracing, single-cell RNA sequencing and organoid culture methods, that have provided important insights into androgen regulation, epithelial cell origins and cellular heterogeneity. We discuss these findings, putting them into context with what is currently known about prostate organogenesis.
Collapse
Affiliation(s)
- Andrew Pletcher
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| | - Maho Shibata
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| |
Collapse
|
2
|
Olson AW, Le V, Wang J, Hiroto A, Kim WK, Lee DH, Aldahl J, Wu X, Kim M, Cunha GR, You S, Sun Z. Stromal androgen and hedgehog signaling regulates stem cell niches in pubertal prostate development. Development 2021; 148:271928. [PMID: 34427305 DOI: 10.1242/dev.199738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.
Collapse
Affiliation(s)
- Adam W Olson
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Alex Hiroto
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| |
Collapse
|
3
|
Bipotent Progenitors Do Not Require Androgen Receptor for Luminal Specification during Prostate Organogenesis. Stem Cell Reports 2021; 15:1026-1036. [PMID: 33176121 PMCID: PMC7664048 DOI: 10.1016/j.stemcr.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR) plays a fundamental role in most aspects of adult prostate homeostasis, and anti-androgen therapy represents the cornerstone of prostate cancer treatment. However, early prostate organogenesis takes place during pre-pubertal stages when androgen levels are low, raising the possibility that AR function is more limited during prostate development. Here, we use inducible AR deletion and lineage tracing in genetically engineered mice to show that basal and luminal epithelial progenitors do not require cell-autonomous AR activity during prostate development. We also demonstrate the existence of a transient bipotent luminal progenitor that can generate luminal and basal progeny, yet is also independent of AR function. Furthermore, molecular analyses of AR-deleted luminal cells isolated from developing prostates indicate their similarity to wild-type cells. Our findings suggest that low androgen levels correlate with luminal plasticity in prostate development and may have implications for understanding how AR inhibition promotes lineage plasticity in prostate cancer. Prostate epithelial cell types are specified when epithelial AR expression is low Bipotent basal progenitors can generate luminal cells without cell-autonomous AR Transient bipotent luminal progenitors can generate luminal and basal cells AR-deleted luminal cells during development are molecularly similar to wild-type
Collapse
|
4
|
Abstract
Puberty is characterized by major changes in the anatomy and function of reproductive organs. Androgen activity is low before puberty, but during pubertal development, the testes resume the production of androgens. Major physiological changes occur in the testicular cell compartments in response to the increase in intratesticular testosterone concentrations and androgen receptor expression. Androgen activity also impacts on the internal and external genitalia. In target cells, androgens signal through a classical and a nonclassical pathway. This review addresses the most recent advances in the knowledge of the role of androgen signaling in postnatal male sexual development, with a special emphasis on human puberty.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
5
|
Secreted Frizzled-Related Protein 4 (SFRP4) Is an Independent Prognostic Marker in Prostate Cancers Lacking TMPRSS2: ERG Fusions. Pathol Oncol Res 2020; 26:2709-2722. [PMID: 32677026 PMCID: PMC7471174 DOI: 10.1007/s12253-020-00861-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Secreted frizzled-related protein 4 (SFRP4) controls WNT signaling and is thought to play a role for tumor aggressiveness. Here, we analyzed a tissue microarray containing 11,152 prostate cancers with pathological, clinical and molecular data by immunohistochemistry. SFRP4 expression was higher in cancer than in non-neoplastic acinar cells. SFRP4 staining was seen in 64.9% of tumors and classified as weak in 33.2%, moderate in 23.9% and strong in 7.8% of cancers. SFRP4 overexpression was linked to advanced tumor stage, high classical/quantitative Gleason grade (p < 0.0001 each), lymph node metastasis (p = 0.0002), and a positive surgical margin (p = 0.0017). SFRP4 positivity was markedly more frequent in ERG positive (77.4%) than in ERG negative cancers (57.4% p < 0.0001). Subset analyses in 2725 cancers with and 3592 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. In a multivariate analysis including various postoperative and prognostic clinico-pathological features, SFRP4 protein expression emerged as an independent prognostic parameter in ERG negative cancers. SFRP4 immunostaining was significantly linked with 10 of 11 previously analyzed chromosomal deletions (p < 0.05 each). In conclusion, high SFRP4 immunostaining is associated with poor prognosis and genomic instability in ERG negative prostate cancers.
Collapse
|
6
|
Yu Y, Jiang W. Pluripotent stem cell differentiation as an emerging model to study human prostate development. Stem Cell Res Ther 2020; 11:285. [PMID: 32678004 PMCID: PMC7364497 DOI: 10.1186/s13287-020-01801-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate development is a complex process, and knowledge about this process is increasingly required for both basic developmental biology studies and clinical prostate cancer research, as prostate tumorigenesis can be regarded as the restoration of development in the adult prostate. Using rodent animal models, scientists have revealed that the development of the prostate is mainly mediated by androgen receptor (AR) signaling and that some other signaling pathways also play indispensable roles. However, there are still many unknowns in human prostate biology, mainly due to the limited availability of proper fetal materials. Here, we first briefly review prostate development with a focus on the AR, WNT, and BMP signaling pathways is necessary for prostate budding/BMP signaling pathways. Based on the current progress in in vitro prostatic differentiation and organoid techniques, we propose human pluripotent stem cells as an emerging model to study human prostate development.
Collapse
Affiliation(s)
- Yangyang Yu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 116 East-Lake Road, District of Wuchang, Wuhan, 430071, Hubei Province, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 116 East-Lake Road, District of Wuchang, Wuhan, 430071, Hubei Province, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Wang F, Zhu Y, Wang F, Wang Y, Dong BJ, Wang N, Gao WQ. Wnt/β-catenin signaling contributes to prostate cancer heterogeneity through reciprocal suppression of H3K27 trimethylation. Biochem Biophys Res Commun 2020; 527:242-249. [PMID: 32446375 DOI: 10.1016/j.bbrc.2020.04.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022]
Abstract
Intratumoral heterogeneity remains as a major challenge in the treatment resistance of prostate cancer. Understanding the mechanism of prostate cancer heterogeneity is essential for developing effective therapies. In this study, we reported the heterogeneous activation of Wnt/β-catenin signaling in prostate cancer. We developed a Wnt/β-catenin signaling reporting system to directly characterize the differences between Wnt/β-catenin signaling active (GFP+) and inactive (GFP-) cells. Compared to GFP- cells, GFP+ cells demonstrated cancer stem cell properties with higher colony formation efficiency, slower cell cycle, higher resistance to docetaxel and higher expression of cancer stem cell markers. In addition, we found that Wnt/β-catenin signaling is negatively correlated with H3K27me3 levels. Further studies demonstrated that Wnt/β-catenin signaling affected H3K27me3 levels by regulating the expression of KDM6A, one of the H3K27me3 demethylases. H3K27me3 suppressed Wnt/β-catenin signaling by directly silencing LEF1 promoter. Together, our studies suggest that Wnt/β-catenin signaling makes a major contribution to prostate cancer heterogeneity and targeting both Wnt/β-catenin signaling active and inactive populations is essential for developing more effective therapies.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuli Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Fang Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bai-Jun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naitao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Le V, He Y, Aldahl J, Hooker E, Yu EJ, Olson A, Kim WK, Lee DH, Wong M, Sheng R, Mi J, Geradts J, Cunha GR, Sun Z. Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration. PLoS Genet 2020; 16:e1008588. [PMID: 31929563 PMCID: PMC6980684 DOI: 10.1371/journal.pgen.1008588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/24/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1-expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor β1 (TGFβ1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFβ1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal androgen-signaling through SHH-responsive cells elicits the growth and regeneration of prostate epithelium. Prostate formation, growth, and regeneration, as well as tumorigenesis, depend on androgens and androgen receptor (AR)-mediated signaling pathways. Tissue recombination assays done more than 30 years ago demonstrated a decisive role for stromal androgen signaling in prostatic epithelium development. However, in the intervening time, the identity of the mesenchymal cells in the urogenital sinus mesenchyme that convey androgen signaling and control prostate epithelium development, morphogenesis, and regeneration has not been determined. In this study, using mouse genetic tools, we demonstrate for the first time that selective deletion of AR in mesenchymal Gli1-expressing cells abolishes early development of prostate tissue and normal prostate formation, and diminishes prostate pubertal growth and regeneration. In addition, using tissue recombination assays, we directly determined an essential requirement for AR expression in mesenchymal Gli1-expressing cells during prostate epithelium development. Our results not only resolve a 30-year-old scientific puzzle by identifying the mesenchymal cell properties of androgen-responsive cells that elicit development of the embryonic prostate epithelium, but also explore a new regulatory mechanism for androgen and Shh signaling-mediated cellular niches in regulating prostatic cell fate, growth, and renewal through paracrine regulation. Given the importance of sex hormone and hedgehog signaling pathways in human development and tumorigenesis, this study extends beyond the field of prostate biology, raising new questions underlying sex hormone and SHH signaling in development and tumorigenesis.
Collapse
Affiliation(s)
- Vien Le
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Monica Wong
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Ruoyu Sheng
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Gerald R. Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Olson A, Le V, Aldahl J, Yu EJ, Hooker E, He Y, Lee DH, Kim WK, Cardiff RD, Geradts J, Sun Z. The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression. PLoS Genet 2019; 15:e1008451. [PMID: 31658259 PMCID: PMC6816545 DOI: 10.1371/journal.pgen.1008451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear β-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear β-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression. The biological significance of E-cadherin in maintaining prostatic epithelial integrity and related molecular mechanisms are still unclear. In this study, using mouse genetic tools, we directly address this important and unresolved question. Conditional deletion of E-cadherin in mouse prostatic epithelia resulted in prostatic intraepithelial neoplasia (PIN) development but no prostatic tumor formation. Both in vivo and in vitro data showed that loss of E-cadherin modulates the cellular localization of β-catenin, elevates its cytoplasmic and nuclear levels, and enhances its activity in transcription and cell proliferation. Intriguingly, in addition to PIN lesions, increased epithelial denudation and cell apoptosis also appeared within PIN lesions. This implicates that although lost E-cadherin is sufficient to introduce oncogenic transformation in prostatic epithelia, it also induces cell apoptosis and disrupts epithelial structure, preventing atypical PIN cells from progressing to tumor cells. Simultaneous deletion of Pten, a tumor suppressor, and E-cadherin in prostatic epithelia resulted in early onset, invasive prostatic tumors with admixture of goblet cells. These results demonstrate a critical role of E-cadherin in promoting prostatic tumor transdifferentiation and progression. This study further elucidates the dynamic role of E-cadherin in maintaining prostatic epithelial integrity during tumor initiation and progression.
Collapse
Affiliation(s)
- Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Dong-Hong Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Robert D. Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, California, United States of America
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Aldahl J, Yu EJ, He Y, Hooker E, Wong M, Le V, Olson A, Lee DH, Kim WK, Murtaugh CL, Cunha GR, Sun Z. A pivotal role of androgen signaling in Notch-responsive cells in prostate development, maturation, and regeneration. Differentiation 2019; 107:1-10. [PMID: 30927641 PMCID: PMC6612318 DOI: 10.1016/j.diff.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence also indicates a regulatory role of Notch signaling in prostate development, differentiation, and growth. However, the collaborative regulatory mechanisms of androgen and Notch signaling during prostate development, growth, and regeneration are largely unknown. Hairy and Enhancer of Split 1 (Hes1) is a transcriptional regulator of Notch signaling pathways, and its expression is responsive to Notch signaling. Hes1-expressing cells have been shown to possess the regenerative capability to repopulate a variety of adult tissues. In this study, we developed new mouse models to directly assess the role of the androgen receptor in prostatic Hes1-expressing cells. Selective deletion of AR expression in embryonic Hes1-expressing cells impeded early prostate development both in vivo and in tissue xenograft experiments. Prepubescent deletion of AR expression in Hes1-expressing cells resulted in prostate glands containing abnormalities in cell morphology and gland architecture. A population of castration-resistant Hes1-expressing cells was revealed in the adult prostate, with the ability to repopulate prostate epithelium following androgen supplementation. Deletion of AR in Hes1-expressing cells diminishes their regenerative ability. These lines of evidence demonstrate a critical role for the AR in Notch-responsive cells during the course of prostate development, morphogenesis, and regeneration, and implicate a mechanism underlying interaction between the androgen and Notch signaling pathways in the mouse prostate.
Collapse
Affiliation(s)
- Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Monica Wong
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Charles L Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA.
| |
Collapse
|
11
|
Wegner KA, Mehta V, Johansson JA, Mueller BR, Keil KP, Abler LL, Marker PC, Taketo MM, Headon DJ, Vezina CM. Edar is a downstream target of beta-catenin and drives collagen accumulation in the mouse prostate. Biol Open 2019; 8:bio.037945. [PMID: 30745437 PMCID: PMC6451354 DOI: 10.1242/bio.037945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-catenin (CTNNB1) directs ectodermal appendage spacing by activating ectodysplasin A receptor (EDAR) transcription, but whether CTNNB1 acts by a similar mechanism in the prostate, an endoderm-derived tissue, is unclear. Here we examined the expression, function, and CTNNB1 dependence of the EDAR pathway during prostate development. In situ hybridization studies reveal EDAR pathway components including Wnt10b in the developing prostate and localize these factors to prostatic bud epithelium where CTNNB1 target genes are co-expressed. We used a genetic approach to ectopically activate CTNNB1 in developing mouse prostate and observed focal increases in Edar and Wnt10b mRNAs. We also used a genetic approach to test the prostatic consequences of activating or inhibiting Edar expression. Edar overexpression does not visibly alter prostatic bud formation or branching morphogenesis, and Edar expression is not necessary for either of these events. However, Edar overexpression is associated with an abnormally thick and collagen-rich stroma in adult mouse prostates. These results support CTNNB1 as a transcriptional activator of Edar and Wnt10b in the developing prostate and demonstrate Edar is not only important for ectodermal appendage patterning but also influences collagen organization in adult prostates. This article has an associated First Person interview with the first author of the paper. Summary: This study provides a rare connection between beta catenin and ectodysplasin A receptor in an endoderm derived tissue and presents a potential mechanism for collagen accumulation in the prostate.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vatsal Mehta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeanette A Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom.,MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, United Kingdom
| | - Brett R Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul C Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|