1
|
Li Z, Yao X, Zhang J, Yang J, Ni J, Wang Y. Exploring the bone marrow micro environment in thalassemia patients: potential therapeutic alternatives. Front Immunol 2024; 15:1403458. [PMID: 39161767 PMCID: PMC11330836 DOI: 10.3389/fimmu.2024.1403458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic mutations in the β-globin gene lead to a decrease or removal of the β-globin chain, causing the build-up of unstable alpha-hemoglobin. This condition is referred to as beta-thalassemia (BT). The present treatment strategies primarily target the correction of defective erythropoiesis, with a particular emphasis on gene therapy and hematopoietic stem cell transplantation. However, the presence of inefficient erythropoiesis in BT bone marrow (BM) is likely to disturb the previously functioning BM microenvironment. This includes accumulation of various macromolecules, damage to hematopoietic function, destruction of bone cell production and damage to osteoblast(OBs), and so on. In addition, the changes of BT BM microenvironment may have a certain correlation with the occurrence of hematological malignancies. Correction of the microenvironment can be achieved through treatments such as iron chelation, antioxidants, hypoglycemia, and biologics. Hence, This review describes damage in the BT BM microenvironment and some potential remedies.
Collapse
Affiliation(s)
- Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xiangmei Yao
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Jie Zhang
- Department of Medical Genetics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinghui Yang
- Department of Pediatrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junxue Ni
- Hospital Office, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yajie Wang
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| |
Collapse
|
2
|
Servais S, Baron F, Lechanteur C, Seidel L, Baudoux E, Briquet A, Selleslag D, Maertens J, Poire X, Schroyens W, Graux C, De Becker A, Zachee P, Ory A, Herman J, Kerre T, Beguin Y. Multipotent mesenchymal stromal cells as treatment for poor graft function after allogeneic hematopoietic cell transplantation: A multicenter prospective analysis. Front Immunol 2023; 14:1106464. [PMID: 36817464 PMCID: PMC9929549 DOI: 10.3389/fimmu.2023.1106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Poor graft function (PGF) is a rare but serious complication of allogeneic hematopoietic cell transplantation (alloHCT). Due to their hematopoietic supporting properties and immune regulatory effects, multipotent mesenchymal stromal cells (MSC) could be considered a good candidate to help to restore bone marrow (BM) niches homeostasis and facilitate hematopoiesis after alloHCT. Methods We prospectively assessed the efficacy and safety of ex-vivo expanded BM-derived MSC from third-party donor in a series of 30 patients with prolonged severe cytopenia and PGF after alloHCT. This multicenter trial was registered at www.clinicaltrials.gov (#NTC00603330). Results Within 90 days post-MSC infusion, 53% (95% CI, 35 - 71%) of patients improved at least one cytopenia (overall response, OR) and 37% (95% CI, 19 - 54%) achieved a complete hematological response (CR: absolute neutrophil count, ANC >0.5 x 109/L, Hb > 80g/L and platelet count > 20 x 109/L with transfusion independence). Corresponding response rates increased to 67% (95% CI, 50 - 84%) OR and 53% (95% CI, 35 - 71%) CR within 180 days after MSC infusion. A significant decrease in red blood cells and platelets transfusion requirement was observed after MSC (median of 30-days transfusion requirement of 0.5 and 0 from d90-120 post-MSC versus 5 and 6.5 before MSC, respectively, p ≤0.001). An increase in ANC was also noted by day +90 and +180, with 3/5 patients with severe neutropenia having recovered an ANC > 1 x 109/L within the 90-120 days after MSC infusion. Overall survival at 1 year post-MSC was 70% (95% CI, 55.4 - 88.5), with all but one of the patients who achieved CR being alive. A single infusion of third-party MSC appeared to be safe, with the exception of one deep vein thrombotic event possibly related to the intervention. Discussion In conclusion, a single i.v. infusion of BM-derived MSC from third party donor seemed to improve hematological function after alloHCT, although spontaneous amelioration cannot be excluded. Comparative studies are warranted to confirm these encouraging results.
Collapse
Affiliation(s)
- Sophie Servais
- Department of Clinical Hematology, University Hospital Center and University of Liège, Liège, Belgium,*Correspondence: Sophie Servais,
| | - Frédéric Baron
- Department of Clinical Hematology, University Hospital Center and University of Liège, Liège, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, University Hospital Center and University of Liège, Liège, Belgium
| | - Laurence Seidel
- Department of Biostatistics, SIMÉ, University Hospital Center and University of Liège, Liège, Belgium
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, University Hospital Center and University of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, University Hospital Center and University of Liège, Liège, Belgium
| | - Dominik Selleslag
- Department of Clinical Hematology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Johan Maertens
- Department of Clinical Hematology, University Hospital Leuven, Leuven, Belgium
| | - Xavier Poire
- Department of Clinical Hematology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Wilfried Schroyens
- Department of Clinical Hematology, Antwerp University Hospital, Edegem, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, Université Catholique de Louvain, University Hospital Center Namur (Godinne), Yvoir, Belgium
| | - Ann De Becker
- Department of Clinical Hematology, Vrije Universiteit Brussel, Universitair Ziekenuis Brussel, Brussels, Belgium
| | - Pierre Zachee
- Department of Clinical Hematology, ZNA Stuivenberg, Antwerp, Belgium
| | - Aurélie Ory
- Belgian Hematology Society, Brussels, Belgium
| | | | - Tessa Kerre
- Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Yves Beguin
- Department of Clinical Hematology, University Hospital Center and University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Martí‐Chillón G, Muntión S, Preciado S, Osugui L, Navarro‐Bailón A, González‐Robledo J, Sagredo V, Blanco JF, Sánchez‐Guijo F. Therapeutic potential of mesenchymal stromal/stem cells in critical-care patients with systemic inflammatory response syndrome. Clin Transl Med 2023; 13:e1163. [PMID: 36588089 PMCID: PMC9806020 DOI: 10.1002/ctm2.1163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite notable advances in the support and treatment of patients admitted to the intensive care unit (ICU), the management of those who develop a systemic inflammatory response syndrome (SIRS) still constitutes an unmet medical need. MAIN BODY Both the initial injury (trauma, pancreatitis, infections) and the derived uncontrolled response promote a hyperinflammatory status that leads to systemic hypotension, tissue hypoperfusion and multiple organ failure. Mesenchymal stromal/stem cells (MSCs) are emerging as a potential therapy for severe ICU patients due to their potent immunomodulatory, anti-inflammatory, regenerative and systemic homeostasis-regulating properties. MSCs have demonstrated clinical benefits in several inflammatory-based diseases, but their role in SIRS needs to be further explored. CONCLUSION In the current review, after briefly overviewing SIRS physiopathology, we explore the potential mechanisms why MSC therapy could aid in the recovery of this condition and the pre-clinical and early clinical evidence generated to date.
Collapse
Affiliation(s)
| | - Sandra Muntión
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Silvia Preciado
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Lika Osugui
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Almudena Navarro‐Bailón
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Javier González‐Robledo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| | | | - Juan F. Blanco
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
- Department of SurgeryUniversity of SalamancaSalamancaSpain
| | - Fermín Sánchez‐Guijo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| |
Collapse
|
4
|
Ibáñez-Fonseca A, Rico A, Preciado S, González-Pérez F, Muntión S, García-Briñón J, García-Macías MC, Rodríguez-Cabello JC, Pericacho M, Alonso M, Sánchez-Guijo F. Mesenchymal Stromal Cells Combined With Elastin-Like Recombinamers Increase Angiogenesis In Vivo After Hindlimb Ischemia. Front Bioeng Biotechnol 2022; 10:918602. [PMID: 35814011 PMCID: PMC9260019 DOI: 10.3389/fbioe.2022.918602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Hindlimb ischemia is an unmet medical need, especially for those patients unable to undergo vascular surgery. Cellular therapy, mainly through mesenchymal stromal cell (MSC) administration, may be a potentially attractive approach in this setting. In the current work, we aimed to assess the potential of the combination of MSCs with a proangiogenic elastin-like recombinamer (ELR)–based hydrogel in a hindlimb ischemia murine model. Human bone marrow MSCs were isolated from four healthy donors, while ELR biomaterials were genetically engineered. Hindlimb ischemia was induced through ligation of the right femoral artery, and mice were intramuscularly injected with ELR biomaterial, 0.5 × 106 MSCs or the combination, and also compared to untreated animals. Tissue perfusion was monitored using laser Doppler perfusion imaging. Histological analysis of hindlimbs was performed after hematoxylin and eosin staining. Immunofluorescence with anti–human mitochondria antibody was used for human MSC detection, and the biomaterial was detected by elastin staining. To analyze the capillary density, immunostaining with an anti–CD31 antibody was performed. Our results show that the injection of MSCs significantly improves tissue reperfusion from day 7 (p = 0.0044) to day 21 (p = 0.0216), similar to the infusion of MSC + ELR (p = 0.0038, p = 0.0014), without significant differences between both groups. After histological evaluation, ELR hydrogels induced minimal inflammation in the injection sites, showing biocompatibility. MSCs persisted with the biomaterial after 21 days, both in vitro and in vivo. Finally, we observed a higher blood vessel density when mice were treated with MSCs compared to control (p<0.0001), but this effect was maximized and significantly different to the remaining experimental conditions when mice were treated with the combination of MSCs and the ELR biomaterial (p < 0.0001). In summary, the combination of an ELR-based hydrogel with MSCs may improve the angiogenic effects of both strategies on revascularization of ischemic tissues.
Collapse
Affiliation(s)
| | - Ana Rico
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- RICORS TERAV, ISCIII, Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cancer Research Center, University of Salamanca, Salamanca, Spain
- *Correspondence: Silvia Preciado,
| | | | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- RICORS TERAV, ISCIII, Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cancer Research Center, University of Salamanca, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Salamanca, Spain
| | | | - José Carlos Rodríguez-Cabello
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Miguel Pericacho
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Matilde Alonso
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- RICORS TERAV, ISCIII, Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cancer Research Center, University of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Sarvar DP, Effatpanah H, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation. Stem Cell Res Ther 2022; 13:202. [PMID: 35578300 PMCID: PMC9109321 DOI: 10.1186/s13287-022-02875-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) play a crucial role in the regulation of hematopoiesis. These cells affect the process through direct cell–cell contact, as well as releasing various trophic factors and extracellular vehicles (EVs) into the bone marrow microenvironment. MSC-derived EVs (MSC-EVs) are prominent intercellular communication tolls enriched with broad-spectrum bioactive factors such as proteins, cytokines, lipids, miRNAs, and siRNAs. They mimic some effects of MSCs by direct fusion with hematopoietic stem cells (HSC) membranes in the bone marrow (BM), thereby affecting HSC fate. MSC-EVs are attractive scope in cell-free therapy because of their unique capacity to repair BM tissue and regulate proliferation and differentiation of HSCs. These vesicles modulate the immune system responses and inhibit graft-versus-host disease following hematopoietic stem cell transplantation (HSCT). Recent studies have demonstrated that MSC-EVs play an influential role in the BM niches because of their unprecedented capacity to regulate HSC fate. Therefore, the existing paper intends to speculate upon the preconditioned MSC-EVs as a novel approach in HSCT.
Collapse
Affiliation(s)
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
7
|
Romecín PA, Vinyoles M, López-Millán B, de la Guardia RD, Atucha NM, Querol S, Bueno C, Benitez R, Gonzalez-Rey E, Delgado M, Menéndez P. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:88-96. [PMID: 35641173 PMCID: PMC8895490 DOI: 10.1093/stcltm/szab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a “suicide gene” switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both “parental” alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.
Collapse
Affiliation(s)
- Paola Alejandra Romecín
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- Paola Alejandra Romecin, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4º floor, 08036, Barcelona, Spain. Tel: (+34) 93 5572810;
| | | | - Belén López-Millán
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- GENYO, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Rafael Diaz de la Guardia
- GENYO, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Noemi M Atucha
- Departamento de Fisiologia Humana, Facultad de Medicina, Murcia, Spain
| | - Sergi Querol
- RICORS-TERAV, ISCIII, Madrid, Spain
- Banc de Sang i Teixits, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- CIBERONC, ISCIII, Barcelona, Spain
| | - Raquel Benitez
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Elena Gonzalez-Rey
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitologia y Biomedicina López-Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV, ISCIII, Madrid, Spain
- CIBERONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Corresponding author: Pablo Menéndez, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4º floor, 08036, Barcelona, Spain. Tel: (+34) 93 5572810;
| |
Collapse
|
8
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
9
|
7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid, a Novel DHA Epoxy Derivative, Inhibits Colorectal Cancer Stemness through Repolarization of Tumor-Associated Macrophage Functions and the ROS/STAT3 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10091459. [PMID: 34573091 PMCID: PMC8470250 DOI: 10.3390/antiox10091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is a highly malignant cancer that is inherently resistant to many chemotherapeutic drugs owing to the complicated tumor-supportive microenvironment (TME). Tumor-associated macrophages (TAM) are known to mediate colorectal cancer metastasis and relapse and are therefore a promising therapeutic target. In the current study, we first confirmed the anti-inflammatory effect of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), a novel DHA dihydroxy derivative synthesized in our previous work. We found that diHEP-DPA significantly reduced lipopolysaccharide (LPS)-induced inflammatory cytokines secretion of THP1 macrophages, IL-6, and TNF-α. As expected, diHEP-DPA also modulated TAM polarization, as evidenced by decreased gene and protein expression of the TAM markers, CD206, CD163, VEGF, and TGF-β1. During the polarization process, diHEP-DPA treatment decreased the concentration of TGF-β1, IL-1β, IL-6, and TNF-α in culture supernatants via inhibiting the NF-κB pathway. Moreover, diHEP-DPA blocked immunosuppression by reducing the expression of SIRPα in TAMs and CD47 in colorectal cancer cells. Knowing that an inflammatory TME largely serves to support epithelial-mesenchymal transition (EMT) and cancer stemness, we tested whether diHEP-DPA acted through polarization of TAMs to regulate these processes. The intraperitoneally injected diHEP-DPA inhibited tumor growth when administered alone or in combination with 5-fluorouracil (5-FU) chemotherapy in vivo. We further found that diHEP-DPA effectively reversed TAM-conditioned medium (TCCM)-induced EMT and enhanced colorectal cancer stemness, as evidenced by its inhibition of colorectal cancer cell migration, invasion and expression of EMT markers, as well as cancer cell tumorspheres formation, without damaging colorectal cancer cells. DiHEP-DPA reduced the population of aldehyde dehydrogenase (ALDH)-positive cells and expression of colorectal stemness marker proteins (CD133, CD44, and Sox2) by modulating TAM polarization. Additionally, diHEP-DPA directly inhibited cancer stemness by inducing the production of reactive oxygen species (ROS), which, in turn, reduced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). These data collectively suggest that diHEP-DPA has the potential for development as an anticancer agent against colorectal cancer.
Collapse
|
10
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen L, Li Y, Xiang C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res Ther 2021; 12:433. [PMID: 34344458 PMCID: PMC8330084 DOI: 10.1186/s13287-021-02511-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, 415000, People's Republic of China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
11
|
Park DJ, Seo YJ. Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration. Tissue Eng Regen Med 2021; 18:485-497. [PMID: 34050888 DOI: 10.1007/s13770-021-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. .,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
12
|
Alteration of payload in extracellular vesicles by crosstalk with mesenchymal stem cells from different origin. J Nanobiotechnology 2021; 19:148. [PMID: 34016123 PMCID: PMC8139033 DOI: 10.1186/s12951-021-00890-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background The application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) requires customized materials to target disease or cell damage. We hypothesized that EVs exert different inflammatory effects on one recipient cell, although stem cells of different origins in humans have similar payloads. Results Here, the payload of EVs released by crosstalk between MSCs and human middle ear epithelial cells (HMEECs) extracted from adipose tissue, bone marrow and tonsils significantly increased the level of anti-inflammatory factors. EVs derived from the co-culture medium decreased TNF-, COX-2, IL-1, and IL-6 levels to approximately zero within 3h in HMEECs. Expression of miR-638 and amyloid- A4 precursor protein-binding family A member 2 was analyzed using microarrays and gene ontology analysis, respectively. Conclusions In conclusion, stem cells of different origins have different payloads through crosstalk with recipient-specific cells. Inducing specific factors in EVs by co-culture with MSCs could be valuable in regenerative medicine. Graphical abstract ![]()
Collapse
|