1
|
Cancedda R, Mastrogiacomo M. The Phoenix of stem cells: pluripotent cells in adult tissues and peripheral blood. Front Bioeng Biotechnol 2024; 12:1414156. [PMID: 39139297 PMCID: PMC11319133 DOI: 10.3389/fbioe.2024.1414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Pluripotent stem cells are defined as cells that can generate cells of lineages from all three germ layers, ectoderm, mesoderm, and endoderm. On the contrary, unipotent and multipotent stem cells develop into one or more cell types respectively, but their differentiation is limited to the cells present in the tissue of origin or, at most, from the same germ layer. Multipotent and unipotent stem cells have been isolated from a variety of adult tissues, Instead, the presence in adult tissues of pluripotent stem cells is a very debated issue. In the early embryos, all cells are pluripotent. In mammalians, after birth, pluripotent cells are maintained in the bone-marrow and possibly in gonads. In fact, pluripotent cells were isolated from marrow aspirates and cord blood and from cultured bone-marrow stromal cells (MSCs). Only in few cases, pluripotent cells were isolated from other tissues. In addition to have the potential to differentiate toward lineages derived from all three germ layers, the isolated pluripotent cells shared other properties, including the expression of cell surface stage specific embryonic antigen (SSEA) and of transcription factors active in the early embryos, but they were variously described and named. However, it is likely that they are part of the same cell population and that observed diversities were the results of different isolation and expansion strategies. Adult pluripotent stem cells are quiescent and self-renew at very low rate. They are maintained in that state under the influence of the "niche" inside which they are located. Any tissue damage causes the release in the blood of inflammatory cytokines and molecules that activate the stem cells and their mobilization and homing in the injured tissue. The inflammatory response could also determine the dedifferentiation of mature cells and their reversion to a progenitor stage and at the same time stimulate the progenitors to proliferate and differentiate to replace the damaged cells. In this review we rate articles reporting isolation and characterization of tissue resident pluripotent cells. In the attempt to reconcile observations made by different authors, we propose a unifying picture that could represent a starting point for future experiments.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Wuttisarnwattana P, Eck BL, Gargesha M, Wilson DL. Optimal slice thickness for improved accuracy of quantitative analysis of fluorescent cell and microsphere distribution in cryo-images. Sci Rep 2023; 13:10907. [PMID: 37407807 DOI: 10.1038/s41598-023-37927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Cryo-imaging has been effectively used to study the biodistribution of fluorescent cells or microspheres in animal models. Sequential slice-by-slice fluorescent imaging enables detection of fluorescent cells or microspheres for corresponding quantification of their distribution in tissue. However, if slices are too thin, there will be data overload and excessive scan times. If slices are too thick, then cells can be missed. In this study, we developed a model for detection of fluorescent cells or microspheres to aid optimal slice thickness determination. Key factors include: section thickness (X), fluorescent cell intensity (Ifluo), effective tissue attenuation coefficient (μT), and a detection threshold (T). The model suggests an optimal slice thickness value that provides near-ideal sensitivity while minimizing scan time. The model also suggests a correction method to compensate for missed cells in the case that image data were acquired with overly large slice thickness. This approach allows cryo-imaging operators to use larger slice thickness to expedite the scan time without significant loss of cell count. We validated the model using real data from two independent studies: fluorescent microspheres in a pig heart and fluorescently labeled stem cells in a mouse model. Results show that slice thickness and detection sensitivity relationships from simulations and real data were well-matched with 99% correlation and 2% root-mean-square (RMS) error. We also discussed the detection characteristics in situations where key assumptions of the model were not met such as fluorescence intensity variation and spatial distribution. Finally, we show that with proper settings, cryo-imaging can provide accurate quantification of the fluorescent cell biodistribution with remarkably high recovery ratios (number of detections/delivery). As cryo-imaging technology has been used in many biological applications, our optimal slice thickness determination and data correction methods can play a crucial role in further advancing its usability and reliability.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Biomedical Engineering Institute, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Brendan L Eck
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Wuttisarnwattana P, Eid S, Wilson DL, Cooke KR. Assessment of therapeutic role of mesenchymal stromal cells in mouse models of graft-versus-host disease using cryo-imaging. Sci Rep 2023; 13:1698. [PMID: 36717650 PMCID: PMC9886911 DOI: 10.1038/s41598-023-28478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Optimization Theory and Applications for Engineering Systems Research Group, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kenneth R Cooke
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ktena YP, Koldobskiy MA, Barbato MI, Fu HH, Luznik L, Llosa NJ, Haile A, Klein OR, Liu C, Gamper CJ, Cooke KR. Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation. J Clin Invest 2022; 132:e158047. [PMID: 35608905 PMCID: PMC9246380 DOI: 10.1172/jci158047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methyltransferase 3a (DNMT3a) is an important part of the epigenetic machinery that stabilizes patterns of activated T cell responses. We hypothesized that donor T cell DNMT3a regulates alloreactivity after allogeneic blood and marrow transplantation (allo-BMT). T cell conditional Dnmt3a KO mice were used as donors in allo-BMT models. Mice receiving allo-BMT from KO donors developed severe acute graft-versus-host disease (aGVHD), with increases in inflammatory cytokine levels and organ histopathology scores. KO T cells migrated and proliferated in secondary lymphoid organs earlier and demonstrated an advantage in trafficking to the small intestine. Donor T cell subsets were purified after BMT for whole-genome bisulfite sequencing (WGBS) and RNA-Seq. KO T cells had global methylation similar to that of WT cells, with distinct, localized areas of hypomethylation. Using a highly sensitive computational method, we produced a comprehensive profile of the altered epigenome landscape. Hypomethylation corresponded with changes in gene expression in several pathways of T cell signaling and differentiation. Additionally, Dnmt3a-KO T cells resulted in superior graft-versus-tumor activity. Our findings demonstrate a critical role for DNMT3a in regulating T cell alloreactivity and reveal pathways that control T cell tolerance. These results also provide a platform for deciphering clinical data that associate donor DNMT3a mutations with increased GVHD, decreased relapse, and improved survival.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Koldobskiy
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael I. Barbato
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Hsuan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicolas J. Llosa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Azeb Haile
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Orly R. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher J. Gamper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kenneth R. Cooke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Metheny L, Eid S, Wuttisarnwattana P, Auletta JJ, Liu C, Van Dervort A, Paez C, Lee Z, Wilson D, Lazarus HM, Deans R, Vant Hof W, Ktena Y, Cooke KR. Human multipotent adult progenitor cells effectively reduce graft-vs-host disease while preserving graft-vs-leukemia activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1506-1519. [PMID: 34255899 PMCID: PMC8596993 DOI: 10.1002/stem.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2021] [Indexed: 11/13/2022]
Abstract
Graft‐vs‐host disease (GvHD) limits successful outcomes following allogeneic blood and marrow transplantation (allo‐BMT). We examined whether the administration of human, bone marrow‐derived, multipotent adult progenitor cells (MAPCs™) could regulate experimental GvHD. The immunoregulatory capacity of MAPC cells was evaluated in vivo using established murine GvHD models. Injection of MAPC cells on day +1 (D1) and +4 (D4) significantly reduced T‐cell expansion and the numbers of donor‐derived, Tumor Necrosis Factor Alpha (TNFα) and Interferon Gamma (IFNγ)‐producing, CD4+ and CD8+ cells by D10 compared with untreated controls. These findings were associated with reductions in serum levels of TNFα and IFNγ, intestinal and hepatic inflammation and systemic GvHD as measured by survival and clinical score. Biodistribution studies showed that MAPC cells tracked from the lung and to the liver, spleen, and mesenteric nodes within 24 hours after injection. MAPC cells inhibited mouse T‐cell proliferation in vitro and this effect was associated with reduced T‐cell activation and inflammatory cytokine secretion and robust increases in the concentrations of Prostaglandin E2 (PGE2) and Transforming Growth Factor Beta (TGFβ). Indomethacin and E‐prostanoid 2 (EP2) receptor antagonism both reversed while EP2 agonism restored MAPC cell‐mediated in vitro T‐cell suppression, confirming the role for PGE2. Furthermore, cyclo‐oxygenase inhibition following allo‐BMT abrogated the protective effects of MAPC cells. Importantly, MAPC cells had no effect on the generation cytotoxic T lymphocyte activity in vitro, and the administration of MAPC cells in the setting of leukemic challenge resulted in superior leukemia‐free survival. Collectively, these data provide valuable information regarding the biodistribution and regulatory capacity of MAPC cells, which may inform future clinical trial design.
Collapse
Affiliation(s)
- Leland Metheny
- University Hospitals Seidman Cancer CenterClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Saada Eid
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Patiwet Wuttisarnwattana
- Department of Computer EngineeringChiang Mai UniversityChiang MaiThailand
- Department of Biomedical Engineering CenterChiang Mai UniversityChiang MaiThailand
| | - Jeffery J. Auletta
- Host Defense Program, Hematology, Oncology, and Infectious DiseasesNationwide Children's HospitalColumbusOhioUSA
| | - Chen Liu
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Alana Van Dervort
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Conner Paez
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - ZhengHong Lee
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - David Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | | | | | | | - Yiouli Ktena
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| | - Kenneth R. Cooke
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|