1
|
Latorre-Rey LJ, Wintterle S, Dütting S, Kohlscheen S, Abel T, Schenk F, Wingert S, Rieger MA, Nieswandt B, Heinz N, Modlich U. Targeting expression to megakaryocytes and platelets by lineage-specific lentiviral vectors. J Thromb Haemost 2017; 15:341-355. [PMID: 27930847 DOI: 10.1111/jth.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Essentials Platelet phenotypes can be modified by lentiviral transduction of hematopoietic stem cells. Megakaryocyte-specific lentiviral vectors were tested in vitro and in vivo for restricted expression. The glycoprotein 6 vector expressed almost exclusively in megakaryocytes. The platelet factor 4 vector was the strongest but with activity in hematopoietic stem cells. SUMMARY Background Lentiviral transduction and transplantation of hematopoietic stem cells (HSCs) can be utilized to modify the phenotype of megakaryocytes and platelets. As the genetic modification in HSCs is transmitted onto all hematopoietic progenies, transgene expression from the vector should be restricted to megakaryocytes to avoid un-physiologic effects by ectopic transgene expression. This can be achieved by lentiviral vectors that control expression by lineage-specific promoters. Methods In this study, we introduced promoters of megakaryocyte/platelet-specific genes, namely human glycoprotein 6 (hGP6) and hGP9, into third generation lentiviral vectors and analyzed their functionality in vitro and in vivo in bone marrow transplantation assays. Their specificity and efficiency of expression was compared with lentiviral vectors utilizing the promoters of murine platelet factor 4 (mPf4) and hGP1BA, both with strong activity in megakaryocytes (MKs) used in earlier studies, and the ubiquitously expressing phosphoglycerate kinase (hPGK) and spleen focus forming virus (SFFV) enhancer/promoters. Results Expression from the mPf4 vector in MKs and platelets was the strongest similar to expression from the viral SFFV promoter, however, the mPf4 vector, also exhibited considerable off-target expression in hematopoietic stem and progenitor cells. In contrast, the newly generated hGP6 vector was highly specific to megakaryocytes and platelets. The specificity was also retained when reducing the promoter size to 350 bp, making it a valuable new tool for lentiviral expression in MKs/platelets. Conclusion MK-specific vectors express preferentially in the megakaryocyte lineage. These vectors can be applied to develop murine models to study megakaryocyte and platelet function, or for gene therapy targeting proteins to platelets.
Collapse
Affiliation(s)
- L J Latorre-Rey
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wintterle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Dütting
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - S Kohlscheen
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - T Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - F Schenk
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - M A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - B Nieswandt
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - N Heinz
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - U Modlich
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
2
|
Ingrungruanglert P, Amarinthnukrowh P, Rungsiwiwut R, Maneesri-le Grand S, Sosothikul D, Suphapeetiporn K, Israsena N, Shotelersuk V. Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thromb Haemost 2014; 113:792-805. [PMID: 25518736 DOI: 10.1160/th14-06-0503] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterised by microthrombocytopenia, complex immunodeficiency, autoimmunity, and haematologic malignancies. It is caused by mutations in the gene encoding WAS protein (WASP), a regulator of actin cytoskeleton and chromatin structure in various blood cell lineages. The molecular mechanisms underlying microthrombocytopenia caused by WASP mutations remain elusive. Murine models of WASP deficiency exhibited only mild thrombocytopenia with normal-sized platelets. Here we report on the successful generation of induced pluripotent stem cell (iPSC) lines from two patients with different mutations in WASP (c.1507T>A and c.55C>T). When differentiated into early CD34+ haematopoietic and megakaryocyte progenitors, the WAS-iPSC lines were indistinguishable from the wild-type iPSCs. However, all WAS-iPSC lines exhibited defects in platelet productionin vitro. WAS-iPSCs produced platelets with more irregular shapes and smaller sizes. Immunofluorescence and electron micrograph showed defects in cytoskeletal rearrangement, F-actin distribution, and proplatelet formation. Proplatelet defects were more pronounced when using culture systems with stromal feeders comparing to feeder-free culture condition. Overexpression of WASP in the WAS-iPSCs using a lentiviral vector improved proplatelet structures and increased the platelet size. Our findings substantiate the use of iPSC technology to elucidate the disease mechanisms of WAS in thrombopoiesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Kanya Suphapeetiporn
- Kanya Suphapeetiporn, MD, PhD, Head, Division of Medical Genetics and Metabolism, Sor Kor Building 11th floor, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand, Tel.: +662 256 4951, Fax: +662 256 4000 Ext 3589, E-mail:
| | - Nipan Israsena
- Nipan Israsena, MD, PhD, Head, Stem Cell and Cell Therapy, Research Unit, Chulalongkorn University, Bangkok 10330, Thailand, Tel.: +662 256 4000 Ext 3589, Fax: +662 256 4911, E-mail:
| | | |
Collapse
|
3
|
Feng Q, Shabrani N, Thon JN, Huo H, Thiel A, Machlus KR, Kim K, Brooks J, Li F, Luo C, Kimbrel EA, Wang J, Kim KS, Italiano J, Cho J, Lu SJ, Lanza R. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 2014; 3:817-31. [PMID: 25418726 PMCID: PMC4235139 DOI: 10.1016/j.stemcr.2014.09.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. Large-scale production of platelets from human iPSCs under defined conditions iPSC platelets are functional both in vivo and in vitro Knockout of β2-microglobulin gene in iPSCs generates universal platelets
Collapse
Affiliation(s)
- Qiang Feng
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Namrata Shabrani
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan N Thon
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115
| | - Hongguang Huo
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Austin Thiel
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Kellie R Machlus
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Julie Brooks
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Feng Li
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Chenmei Luo
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | | | - Jiwu Wang
- Allele Biotechnology, San Diego, CA 92121, USA
| | - Kwang-Soo Kim
- MacLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Joseph Italiano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115; Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Shi-Jiang Lu
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Robert Lanza
- Advanced Cell Technology, Marlborough, MA 01752, USA.
| |
Collapse
|
4
|
Takayama N, Eto K. Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci 2012; 69:3419-28. [PMID: 22527724 PMCID: PMC3445798 DOI: 10.1007/s00018-012-0995-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells [PSCs; including human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] can infinitely proliferate in vitro and are easily accessible for gene manipulation. Megakaryocytes (MKs) and platelets can be created from human ESCs and iPSCs in vitro and represent a potential source of blood cells for transfusion and a promising tool for studying the human thrombopoiesis. Moreover, disease-specific iPSCs are a powerful tool for elucidating the pathogenesis of hematological diseases and for drug screening. In that context, we and other groups have developed in vitro MK and platelet differentiation systems from human pluripotent stem cells (PSCs). Combining this co-culture system with a drug-inducible gene expression system enabled us to clarify the novel role played by c-MYC during human thrombopoiesis. In the next decade, technical advances (e.g., high-throughput genomic sequencing) will likely enable the identification of numerous gene mutations associated with abnormal thrombopoiesis. Combined with such technology, an in vitro system for differentiating human PSCs into MKs and platelets could provide a novel platform for studying human gene function associated with thrombopoiesis.
Collapse
Affiliation(s)
- Naoya Takayama
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koji Eto
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
5
|
Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, Yamaguchi T, Otsu M, Nishimura K, Nakanishi M, Sawaguchi A, Nagai R, Takahashi K, Yamanaka S, Nakauchi H, Eto K. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. ACTA ACUST UNITED AC 2010; 207:2817-30. [PMID: 21098095 PMCID: PMC3005234 DOI: 10.1084/jem.20100844] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a(+)CD42b(+) platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b(+) platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones.
Collapse
Affiliation(s)
- Naoya Takayama
- Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, the Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|