1
|
Noronha-Matos JB, Sousa-Soares C, Correia-de-Sá P. Differential participation of CaMKII/ROCK and NOS pathways in the cholinergic inhibitory drive operated by nicotinic α7 receptors in perisynaptic Schwann cells. Biochem Pharmacol 2025; 231:116649. [PMID: 39581530 DOI: 10.1016/j.bcp.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nicotinic α7 receptors (α7 nAChRs) present in perisynaptic Schwann cells (PSCs) control acetylcholine (ACh) spillover from the neuromuscular synapse by transiently increasing intracellular Ca2+, which fosters adenosine release via type 1 equilibrative nucleoside transporters (ENT1) and retrograde activation of presynaptic A1 inhibitory receptors. The putative Ca2+-dependent pathways downstream α7 nAChRs involved in the sensing inhibitory drive operated by PSCs is unknown. Herein, we used phrenic nerve-hemidiaphragm preparations from Wistar rats. Time-lapse video-microscopy was instrumental to assess nerve-evoked (50-Hz bursts) transmitter exocytosis and intracellular NO oscillations in nerve terminals and PSCs loaded with FM4-64 and DAF-FM diacetate fluorescent dyes, respectively. Selective activation of α7 nAChRs with PNU 282987 reduced transmitter exocytosis (FM4-64 dye unloading) during 50-Hz bursts. Inhibition of calmodulin activity (with W-7), Ca2+/calmodulin-dependent protein kinase II (CaMKII; with KN-62) and Rho-kinase (ROCK; with H1152) all prevented the release inhibitory effect of PNU 282987. The α7 nAChR agonist transiently increased NO inside PSCs; the same occurred during phrenic nerve stimulation with 50-Hz bursts in the presence of the cholinesterase inhibitor, neostigmine. The nitric oxide synthase (NOS) inhibitor, L-NOARG, but not with the guanylylcyclase (GC) inhibitor, ODQ, prevented inhibition of transmitter exocytosis by PNU 282987. Inhibition of adenosine kinase with ABT 702 favors the intracellular accumulation and translocation of the nucleoside to the synaptic cleft, thus overcoming prevention of the PNU 282987 effect caused by H1152, but not by L-NOARG. In conclusion, the α7nAChR-mediated cholinergic inhibitory drive operated by PSCs involves two distinct Ca2+-dependent intracellular pathways: a CaMKII/ROCK cascade along with a GC-independent NO pathway with divergent end-effects concerning ADK inhibition.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Carlos Sousa-Soares
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Stojković M, Todorović Z, Protic D, Stevanovic S, Medić D, Charvet CL, Marjanović DS, Nedeljković Trailović J, Trailović SM. Pharmacological effects of monoterpene carveol on the neuromuscular system of nematodes and mammals. Front Pharmacol 2024; 15:1326779. [PMID: 38318146 PMCID: PMC10839021 DOI: 10.3389/fphar.2024.1326779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
The control of parasitic nematode infections relies mostly on anthelmintics. The potential pharmacotherapeutic application of phytochemicals, in order to overcome parasite resistance and enhance the effect of existing drugs, is becoming increasingly important. The antinematodal effects of carveol was tested on the free-living nematode Caenorhabditis elegans and the neuromuscular preparation of the parasitic nematode Ascaris suum. Carveol caused spastic paralysis in C. elegans. In A. suum carveol potentiated contractions induced by acetylcholine (ACh) and this effect was confirmed with two-electrode voltage-clamp electrophysiology on the A. suum nicotinic ACh receptor expressed in Xenopus oocytes. However, potentiating effect of carveol on ACh-induced contractions was partially sensitive to atropine, indicates a dominant nicotine effect but also the involvement of some muscarinic structures. The effects of carveol on the neuromuscular system of mammals are also specific. In micromolar concentrations, carveol acts as a non-competitive ACh antagonist on ileum contractions. Unlike atropine, it does not change the EC50 of ACh, but reduces the amplitude of contractions. Carveol caused an increase in Electrical Field Stimulation-evoked contractions of the isolated rat diaphragm, but at higher concentrations it caused an inhibition. Also, carveol neutralized the mecamylamine-induced tetanic fade, indicating a possibly different pre- and post-synaptic action at the neuromuscular junction.
Collapse
Affiliation(s)
- Maja Stojković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Todorović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Dragana Medić
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Djordje S Marjanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Saša M Trailović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Arkhipov AY, Fedorov NS, Nurullin LF, Khabibrakhmanov AN, Mukhamedyarov MA, Samigullin DV, Malomouzh AI. Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice. Cell Mol Neurobiol 2023; 43:4157-4172. [PMID: 37689594 PMCID: PMC11407716 DOI: 10.1007/s10571-023-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.
Collapse
Affiliation(s)
- Arsenii Y Arkhipov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan State Medical University, 49 Butlerova Street, Kazan, Russia, 420012
| | | | | | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111.
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111.
| |
Collapse
|
5
|
Germano-Filho PA, Cavalcanti IL, Micuci AJQR, Velarde LGC, de Boer HD, Verçosa N. Recurarization with magnesium sulfate administered after two minutes sugammadex reversal: A randomized, double-blind, controlled trial. J Clin Anesth 2023; 89:111186. [PMID: 37393856 DOI: 10.1016/j.jclinane.2023.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
STUDY OBJECTIVE The current study tested the hypothesis that magnesium sulfate after reversal with sugammadex causes recurarization. DESIGN A single-center, prospective, randomized, double-blind, controlled trial. SETTING Terciary care hospital in Rio de Janeiro, Brazil. PATIENTS Included 60 patients undergoing for elective otolaryngological surgery. INTERVENTIONS All patients received total intravenous anesthesia and a single dose of rocuronium (0.6 mg/kg). In 30 patients, the neuromuscular blockade was reversed with sugammadex (4 mg/kg) at the reappearance of one or two posttetanic counts (deep-blockade series). In 30 other patients, sugammadex (2 mg/kg) was administered at the reappearance of the second twitch of the train-of-four (moderate-blockade series). After the normalized train-of-four ratio recovered to ≥0.9, the patients in each series were randomized to receive intravenous magnesium sulfate (60 mg/kg) or placebo for 10 min. Neuromuscular function was measured by acceleromyography. MEASUREMENTS The primary outcome was the number of patients who exhibited recurarization (normalized train-of-four ratio < 0.9). The secondary outcome was rescue with an additional dose of sugammadex after 60 min. MAIN RESULTS In the deep-blockade series, a normalized train-of-four ratio < 0.9 occurred in 9/14 (64%) patients receiving magnesium sulfate and 1/14 (7%) receiving placebo, RR 9.0 (95% CI: 62-1.30), and (p = 0.002), with four rescues with sugammadex. In the moderate-blockade series, neuromuscular blockade recurred in 11/15 (73%) patients receiving magnesium sulfate and in 0/14 (0%) receiving placebo (p < 0.001), with two rescues. The absolute differences in recurarization were 57% and 73% in the deep-blockade and moderate-blockade, respectively. CONCLUSIONS Single-dose magnesium sulfate led to a normalized train-of-four ratio < 0.9, 2 min after recovery from rocuronium-induced deep and moderate neuromuscular blockade using sugammadex. Additional sugammadex reversed prolonged recurarization.
Collapse
Affiliation(s)
- Paulo A Germano-Filho
- Department of Surgery, Anesthesiology, Surgical Sciences Postgraduate Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of General and Specialized Surgery, Anesthesiology, Universidade Federal Fluminense, Niterói, Brazil.
| | - Ismar L Cavalcanti
- Department of General and Specialized Surgery, Anesthesiology, Universidade Federal Fluminense, Niterói, Brazil; Department of General and Specialized Surgery, Anesthesiology, Medical Sciences Postgraduate Program, Universidade Federal Fluminense, Niterói, Brazil
| | - Angelo J Q R Micuci
- Department of Anesthesiology, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Luis G C Velarde
- Department of Statistics, Medical Sciences Postgraduate Program Universidade Federal Fluminense, Niterói, Brazil
| | - Hans D de Boer
- Department of Anesthesiology and Pain Medicine, Martini General Hospital, Groningen, the Netherlands
| | - Nubia Verçosa
- Department of Surgery, Anesthesiology, Surgical Sciences Postgraduate Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Sousa-Soares C, Noronha-Matos JB, Correia-de-Sá P. Purinergic Tuning of the Tripartite Neuromuscular Synapse. Mol Neurobiol 2023; 60:4084-4104. [PMID: 37016047 DOI: 10.1007/s12035-023-03317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
The vertebrate neuromuscular junction (NMJ) is a specialised chemical synapse involved in the transmission of bioelectric signals between a motor neuron and a skeletal muscle fiber, leading to muscle contraction. Typically, the NMJ is a tripartite synapse comprising (a) a presynaptic region represented by the motor nerve ending, (b) a postsynaptic skeletal motor endplate area, and (c) perisynaptic Schwann cells (PSCs) that shield the motor nerve terminal. Increasing evidence points towards the role of PSCs in the maintenance and control of neuromuscular integrity, transmission, and plasticity. Acetylcholine (ACh) is the main neurotransmitter at the vertebrate skeletal NMJ, and its role is fine-tuned by co-released purinergic neuromodulators, like adenosine 5'-triphosphate (ATP) and its metabolite adenosine (ADO). Adenine nucleotides modulate transmitter release and expression of postsynaptic ACh receptors at motor synapses via the activation of P2Y and P2X receptors. Endogenously generated ADO modulates ACh release by acting via co-localised inhibitory A1 and facilitatory A2A receptors on motor nerve terminals, whose tonic activation depends on the neuronal firing pattern and their interplay with cholinergic receptors and neuropeptides. Thus, the concerted action of adenine nucleotides, ADO, and ACh/neuropeptide co-transmitters is paramount to adapting the neuromuscular transmission to the working load under pathological conditions, like Myasthenia gravis. Unravelling these functional complexities prompted us to review our knowledge about the way purines orchestrate neuromuscular transmission and plasticity in light of the tripartite synapse concept, emphasising the often-forgotten role of PSCs in this context.
Collapse
Affiliation(s)
- Carlos Sousa-Soares
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Pedersen TH, Macdonald WA, Broch‐Lips M, Halldorsdottir O, Bækgaard Nielsen O. Chloride channel inhibition improves neuromuscular function under conditions mimicking neuromuscular disorders. Acta Physiol (Oxf) 2021; 233:e13690. [PMID: 34021706 DOI: 10.1111/apha.13690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
AIM The skeletal muscle Cl- channels, the ClC-1 channels, stabilize the resting membrane potential and dampen muscle fibre excitability. This study explored whether ClC-1 inhibition can recover nerve-stimulated force in isolated muscle under conditions of compromised neuromuscular transmission akin to disorders of myasthenia gravis and Lambert-Eaton syndrome. METHODS Nerve-muscle preparations were isolated from rats. Preparations were exposed to pre-or post-synaptic inhibitors (ω-agatoxin, elevated extracellular Mg2+ , α-bungarotoxin or tubocurarine). The potential of ClC-1 inhibition (9-AC or reduced extracellular Cl- ) to recover nerve-stimulated force under these conditions was assessed. RESULTS ClC-1 inhibition recovered force in both slow-twitch soleus and fast-twitch EDL muscles exposed to 0.2 µmol/L tubocurarine or 3.5 mmol/L Mg2+ . Similarly, ClC-1 inhibition recovered force in soleus muscles exposed to α-bungarotoxin or ω-agatoxin. Moreover, the concentrations of tubocurarine and Mg2+ required for reducing force to 50% rose from 0.14 ± 0.02 µmol/L and 4.2 ± 0.2 mmol/L in control muscles to 0.45 ± 0.03 µmol/L and 4.7 ± 0.3 mmol/L in muscles with 9-AC respectively (P < .05, paired T test). Inhibition of acetylcholinesterase (neostigmine) and inhibition of voltage-gated K+ channels (4-AP) relieve symptoms in myasthenia gravis and Lambert-Eaton syndrome, respectively. Neostigmine and 9-AC additively increased the tubocurarine concentration required to reduce nerve-stimulated force to 50% (0.56 ± 0.05 µmol/L with 9-AC and neostigmine) and, similarly, 4-AP and 9-AC additively increased the Mg2+ concentration required to reduce nerve-stimulated force to 50% (6.5 ± 0.2 mmol/L with 9-AC and 4-AP). CONCLUSION This study shows that ClC-1 inhibition can improve neuromuscular function in pharmacological models of compromised neuromuscular transmission.
Collapse
|
8
|
Bukharaeva EA, Skorinkin AI. Cholinergic Modulation of Acetylcholine
Secretion at the Neuromuscular Junction. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Machamer JB, Apland JP, Winner BM, Wolfe SE, Pagarigan KT, Bounader KM, Kasten SA, Adler M, McNutt PM. Functional basis for dose-dependent antagonism of rat and rabbit neuromuscular transmission by the bis-pyridinium oxime MMB4. Arch Toxicol 2020; 94:3877-3891. [DOI: 10.1007/s00204-020-02858-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/14/2020] [Indexed: 01/30/2023]
|
10
|
Noronha-Matos JB, Oliveira L, Peixoto AR, Almeida L, Castellão-Santana LM, Ambiel CR, Alves-do Prado W, Correia-de-Sá P. Nicotinic α7 receptor-induced adenosine release from perisynaptic Schwann cells controls acetylcholine spillover from motor endplates. J Neurochem 2020; 154:263-283. [PMID: 32011735 DOI: 10.1111/jnc.14975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/01/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
Acetylcholine (ACh) spillover from motor endplates occurs after neuronal firing bursts being potentiated by cholinesterase inhibitors (e.g., neostigmine). Nicotinic α7 receptors (α7nAChR) on perisynaptic Schwann cells (PSCs) can control ACh spillover by unknown mechanisms. We hypothesized that adenosine might be the gliotransmitter underlying PSCs-nerve terminal communication. Rat isolated hemidiaphragm preparations were used to measure (1) the outflow of [3 H]ACh, (2) real-time transmitter exocytosis by video-microscopy with the FM4-64 fluorescent dye, and (3) skeletal muscle contractions during high-frequency (50 Hz) nerve stimulation bursts in the presence of a selective α7nAChR agonist, PNU 282987, or upon inhibition of cholinesterase activity with neostigmine. To confirm our prediction that α7nAChR-mediated effects require direct activation of PSCs, we used fluorescence video-microscopy in the real-time mode to measure PNU 282987-induced [Ca2+ ]i transients from Fluo-4 NW loaded PSCs in non-stimulated preparations. The α7nAChR agonist, PNU 282987, decreased nerve-evoked diaphragm tetanic contractions. PNU 282987-induced inhibition was mimicked by neostigmine and results from the reduction of ACh exocytosis measured as decreases in [3 H]ACh release and FM4-64 fluorescent dye unloading. Methyllycaconitine blockage of α7nAChR and the fluoroacetate gliotoxin both prevented inhibition of nerve-evoked ACh release and PSCs [Ca2+ ]i transients triggered by PNU 282987 and neostigmine. Adenosine deamination, inhibition of the ENT1 nucleoside outflow, and blockage of A1 receptors prevented PNU 282987-induced inhibition of transmitter release. Data suggest that α7nAChR controls tetanic-induced ACh spillover from the neuromuscular synapse by promoting adenosine outflow from PSCs via ENT1 transporters and retrograde activation of presynaptic A1 inhibitory receptors.
Collapse
Affiliation(s)
- José B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Laura Oliveira
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Ana R Peixoto
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Liliana Almeida
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | | | - Célia R Ambiel
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Wilson Alves-do Prado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Paraná, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Kim YB, Choi JM, Chang YJ, Choi HR, In J, Yang HS. Effects of different sugammadex doses on the train of four ratio recovery progression during rocuronium induced neuromuscular blockade in the rat phrenic nerve hemidiaphragm. Korean J Anesthesiol 2019; 73:239-246. [PMID: 31619027 PMCID: PMC7280895 DOI: 10.4097/kja.19278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 12/02/2022] Open
Abstract
Background In this study, we used an ex-vivo model to investigate the recovery pattern of both the train-of-four (TOF) ratio and first twitch tension of TOF (T1), and determined their relationship during recovery from rocuronium-induced neuromuscular blockade at various concentrations of sugammadex. Methods Tissue specimens of the phrenic nerve-hemidiaphragm were obtained from 60 adult Sprague-Dawley rats. Each specimen was immersed in an organ bath filled with Krebs buffer solution and stimulated with the TOF pattern using indirect supramaximal stimulation at 20-second intervals. After a 30-minute stabilization period, rocuronium loading and booster doses were serially administered at 10-minute intervals in each sample until > 95% depression of T1 was confirmed. Specimens were randomly allocated to either the control group (washout) or to one of five sugammadex concentration groups (0.75, 1, 2, 4, or 8 times equimolar doses of rocuronium to produce > 95% T1 depressions; SGX0.75, SGX1, SGX2, SGX4, and SGX8, respectively). Recovery from neuromuscular blockade was monitored using T1 and the TOF ratio simultaneously until the recovery of T1 to > 95% and the TOF ratio to > 0.9. Results Statistically significant intergroup differences were observed between the recovery patterns of T1 and the TOF ratio (TOFR, P < 0.050), except between SGX2 and SGX4 groups. TOFR/T1 values were maintained at nearly 1 in the control, SGX0.75, and SGX1 groups; however, they were exponentially decayed in the SGX2, SGX4, and SGX8 groups. Conclusions Recovery of the TOF ratio may be influenced by the sugammadex dose, and a TOF ratio of 1.0 may be achieved before full T1 recovery if administration of sugammadex exceeds that of rocuronium.
Collapse
Affiliation(s)
- Yong Beom Kim
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jae-Moon Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Jin Chang
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Hey-Ran Choi
- Department of Anaesthesiology and Pain Medicine, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Junyong In
- Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Hong-Seuk Yang
- Department of Anaesthesiology and Pain Medicine, Daejon Sun Hospital, Daejon, Korea
| |
Collapse
|
12
|
Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology 2019; 146:252-263. [DOI: 10.1016/j.neuropharm.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
|
13
|
Kim YB, Lee S, Lee KC, Kim HJ, Ro YJ, Yang HS. Effects of presynaptic muscarinic cholinoreceptor blockade on neuromuscular transmission as assessed by the train-of-four and the tetanic fade response to rocuronium. Clin Exp Pharmacol Physiol 2018; 44:795-802. [PMID: 28394450 PMCID: PMC5519946 DOI: 10.1111/1440-1681.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
This study investigated the effect of muscarinic M1 and M2 receptor antagonists on the rocuronium‐induced train of four (TOF) fade and tetanic fade, respectively. Ex‐vivo phrenic nerves and diaphragms were obtained from adult Sprague‐Dawley rats and stabilized in Krebs buffer; the nerve‐stimulated muscle TOF fade was observed at 20 s intervals. For the TOF study, phrenic nerves and diaphragms were incubated with pirenzepine (an M1 blocker) at concentrations of 0 nmol L−1 (control), 10 nmol L−1 (PZP10), or 100 nmol L−1 (PZP100). Rocuronium was then administered incrementally until the first twitch tension had depressed by >95% during TOF stimulation. The mean TOF ratios were compared when the first twitch tensions were depressed by 40%‐50%. For the tetanic fade study, 50 Hz/5 s tetani was applied initially, 30 min after the administration of a loading dose of rocuronium and methoctramine (an M2 receptor blocker, loaded at 0 μmol L−1 [control], 1 μmol L−1 [MET1], or 10 μmol L−1 [MET10]). The EC95 of rocuronium was significantly lower in the PZP10 group than in the control group. In the PZP10 group, the TOF ratios at 50% and first twitch tension depression were significantly lower than those in the control group (P=.02). During tetanic stimulation, the tetanic fade was significantly enhanced in the MET10 group compared to the other groups. This study shows that antagonists of muscarinic M1 and M2 receptors affect the rocuronium‐induced neuromuscular block as demonstrated by the reduced EC95 and TOF ratios (M1 antagonist, pirenzepine) or the enhanced 50‐Hz tetanic fade (M2 antagonist, methoctramine).
Collapse
Affiliation(s)
- Yong Beom Kim
- Department of Anaesthesiology and Pain Medicine, Gil Medical Center, College of Medicine, Gachon University, Incheon, Korea
| | - Sangseok Lee
- Department of Anaesthesiology and Pain Medicine, Sangye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Kyeong Chun Lee
- Department of Anaesthesiology and Pain Medicine, Gil Medical Center, College of Medicine, Gachon University, Incheon, Korea
| | - Ha Jung Kim
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Young Jin Ro
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Hong-Seuk Yang
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| |
Collapse
|
14
|
Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicol Appl Pharmacol 2017; 334:8-17. [DOI: 10.1016/j.taap.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
|
15
|
Naguib M, Brull SJ, Johnson KB. Conceptual and technical insights into the basis of neuromuscular monitoring. Anaesthesia 2017; 72 Suppl 1:16-37. [DOI: 10.1111/anae.13738] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- M. Naguib
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University; Department of General Anesthesia; Cleveland Clinic; Cleveland Ohio USA
| | - S. J. Brull
- Department of Anesthesiology; Mayo Clinic College of Medicine; Jacksonville Florida USA
| | - K. B. Johnson
- Department of Anesthesiology; University of Utah; Salt Lake City Utah USA
| |
Collapse
|
16
|
Nagashima M, Sasakawa T, Schaller SJ, Martyn JAJ. Block of postjunctional muscle-type acetylcholine receptors in vivo causes train-of-four fade in mice. Br J Anaesth 2015; 115:122-7. [PMID: 25835024 DOI: 10.1093/bja/aev037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Train-of-four (TOF) fade during nerve-mediated muscle contraction is postulated to be attributable to inhibition of prejunctional nicotinic α3β2 acetylcholine receptors (nAChRs), while decrease of twitch tension is attributable to block of postjunctional muscle nAChRs. The validity of these presumptions was tested using specific prejunctional and postjunctional nAChR antagonists, testing the hypothesis that fade is not always a prejunctional phenomenon. METHODS Pentobarbital anaesthetized mice had TOF fade measured after administration of: either 0.9% saline; the prejunctional α3β2 nAChR antagonist, dihydro-β-erythroidine (DHβE); the postjunctional nAChR antagonists, α-bungarotoxin (α-BTX) or α-conotoxin GI; and a combination of α-BTX and DHβE; or a combination of α-conotoxin GI and DHβE. RESULTS Saline caused no neuromuscular changes. Administration of muscle nAChR antagonists, α-BTX or α-conotoxin GI caused significant decrease of twitch tension and TOF fade compared with baseline (P<0.01). DHβE alone caused no change of twitch tension or fade even after 90 min, but its coadministration with α-BTX or α-conotoxin GI significantly accelerated the onset of paralysis and degree of fade compared with α-BTX or α-conotoxin GI alone (P<0.01). CONCLUSIONS Occupation of postjunctional nAChRs alone by α-BTX or α-conotoxin GI causes fade. As the prejunctional effects of DHβE on fade became manifest only when co-administered with α-BTX or α-conotoxin GI, specific inhibition of prejunctional nAChR alone is not necessary and sufficient to cause fade. Fade observed during repetitive nerve stimulation can be because of block of either postjunctional nAChRs alone, or block of prejunctional and postjunctional nAChRs together.
Collapse
Affiliation(s)
- M Nagashima
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, and Harvard Medical School, Boston, MA, USA
| | - T Sasakawa
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, and Harvard Medical School, Boston, MA, USA
| | - S J Schaller
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, and Harvard Medical School, Boston, MA, USA Klinikum Rechts der Isar, Technische Universitat Munchen, Klinik fur Anaesthesiologie, Munchen, Germany
| | - J A J Martyn
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Deficits in endogenous adenosine formation by ecto-5'-nucleotidase/CD73 impair neuromuscular transmission and immune competence in experimental autoimmune myasthenia gravis. Mediators Inflamm 2015; 2015:460610. [PMID: 25691808 PMCID: PMC4322825 DOI: 10.1155/2015/460610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/20/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
AMP dephosphorylation via ecto-5'-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO) from released adenine nucleotides. ADO, via A2A receptors (A2ARs), is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5'-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG). Results show that CD4(+)CD25(+)FoxP3(+) regulatory T cells express lower amounts of ecto-5'-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4(+) T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5'-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.
Collapse
|
18
|
Oliveira L, Costa AC, Noronha-Matos JB, Silva I, Cavalcante WLG, Timóteo MA, Corrado AP, Dal Belo CA, Ambiel CR, Alves-do-Prado W, Correia-de-Sá P. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles. Neuropharmacology 2014; 89:64-76. [PMID: 25220030 DOI: 10.1016/j.neuropharm.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic vesicle redistribution.
Collapse
Affiliation(s)
- L Oliveira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - A C Costa
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - W L G Cavalcante
- Instituto de Biociências, Universidade Estadual de São Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - M A Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - A P Corrado
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Gabriel, Rio Grande do Sul, Brazil
| | - C A Dal Belo
- Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - C R Ambiel
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Paraná, Brazil
| | - W Alves-do-Prado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Paraná, Brazil
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal.
| |
Collapse
|
19
|
Paradoxical neostigmine-induced TOFfade: On the role of presynaptic cholinergic and adenosine receptors. Eur J Pharmacol 2014; 723:389-96. [DOI: 10.1016/j.ejphar.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 02/07/2023]
|
20
|
Nagashima M, Yasuhara S, Martyn JAJ. Train-of-four and tetanic fade are not always a prejunctional phenomenon as evaluated by toxins having highly specific pre- and postjunctional actions. Anesth Analg 2013; 116:994-1000. [PMID: 23477960 DOI: 10.1213/ane.0b013e31828841e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nerve-stimulated fade in muscle is generally accepted as a prejunctional phenomenon mediated by block of prejunctional acetylcholine receptors (AChRs) at the nerve terminal, whereas decrease of twitch tension is considered a postjunctional effect due to block of muscle AChRs. Using ligands with specific pre- or postjunctional effects only, we tested the hypothesis that fade is not necessarily a prejunctional phenomenon. METHODS Neuromuscular function in rats was evaluated after IM (2.5 U) or IV (12.0 U) injection of botulinum toxin (Botx), or IV (250 μg/kg) α-bungarotoxin (α-BTX) alone. The acute neuromuscular effects of IV 2 mg/kg dihydro-β-erythroidine (DHβE), alone and in combination with α-BTX, were also tested. Botx decreases vesicular release of ACh, and α-BTX binds to postjunctional nicotinic AChRs only, whereas DHβE binds specifically to prejunctional α3β2 AChRs only. In view of the lack of acute effects of Botx even at 2 hours after IV injection, its neuromuscular effects were also evaluated at 24 hours after IM injection (0.6 U) and compared with IM injection of α-BTX (25 μg/kg) or saline also given 24 hours earlier. The sciatic nerve-tibialis muscle preparation, during train-of-four and tetanic stimulation, was used to test neuromuscular effects in vivo. RESULTS IV and IM Botx had no observable neuromuscular effects at 2 hours. IV α-BTX caused twitch depression within a few minutes, and significant fade (P = 0.002) at 75% of baseline twitch tension; these effects persisted until the end of the observation period of 2 hours. IV DHβE alone caused no significant change in single twitch (P = 0.899) or train-of-four ratio (P = 0.394), but significantly enhanced the fade of IV α-BTX (P = 0.001 at 75% of baseline twitch tension). IM Botx or α-BTX, at 24 hours after their injection, resulted in a significant decrease of single twitch and tetanic tensions (P < 0.0001), but Botx did not cause fade, whereas α-BTX caused significant (P < 0.0001) fade at 24 hours. The tibialis muscle weights and protein expression of α1 subunit of AChR (Western blots) did not differ between Botx, α-BTX and saline-injected groups at 24 hours but increased in denervated muscle (positive control). CONCLUSIONS Botx-induced decreased ACh release in and of itself does not cause fade but does cause decrease of absolute tensions. Decrease of available (functional) postjunctional AChRs by α-BTX did induce fade. The prejunctional fade effects of DHβE on α3β2 AChRs become manifest only when the margin of safety was decreased by concomitant administration of α-BTX. Thus, fade during repetitive stimulation is not always a prejunctional phenomenon and may also reflect the decreased margin of safety of neurotransmission, which can be due to a pure postjunctional AChRs block or to a combination of both pre- and postjunctional AChRs block. Block of prejunctional α3β2 AChRs alone is not necessary and sufficient to cause fade.
Collapse
Affiliation(s)
- Michio Nagashima
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital and Shriners Hospitals for Children; and Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
21
|
Ji F, Han J, Liu B, Wang H, Shen G, Tao J. Vecuronium suppresses transmission at the rat phrenic neuromuscular junction by inhibiting presynaptic L-type calcium channels. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2012.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Pereira MW, Correia-de-Sá P, Alves-Do-Prado W. Adenosine A(2A) receptor antagonists are broad facilitators of antinicotinic neuromuscular blockade monitored either with 2 Hz train-of-four or 50 Hz tetanic stimuli. Clin Exp Pharmacol Physiol 2012; 39:869-77. [PMID: 23013133 DOI: 10.1111/j.1440-1681.2012.12004.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. The 2 Hz train-of-four ratio (TOF(ratio)) is used to monitor the degree of patient curarization. Using a rat phrenic nerve-hemidiaphragm preparation, we showed that antinicotinic agents, such as hexamethonium, d-tubocurarine and pancuronium, but not cisatracurium, decreased contractions produced by physiological nerve activity patterns (50 Hz) more efficiently than those caused by 2 Hz trains. Uncertainty about the usefulness of the TOF(ratio) to control safe recovery from curarization prompted us to investigate the muscarinic and adenosine neuromodulation of tetanic (50 Hz) fade induced by antinicotinic agents at concentrations that cause a 25% reduction in the TOF(ratio) (TOF(fade)). 2. Tetanic fade caused by d-tubocurarine (1.1 μmol/L), pancuronium (3 μmol/L) and hexamethonium (5.47 mmol/L) was attenuated by blocking presynaptic inhibitory muscarinic M(2) and adenosine A(1) receptors with methoctramine (1 μmol/L) and 1,3-dipropyl-8-cyclopentylxanthine (2.5 nmol/L), respectively. These compounds enhanced rather than decreased tetanic fade induced by cisatracurium (2.2 μmol/L), but they consistently attenuated cisatracurium-induced TOF(fade). The effect of the M(1) receptor antagonist pirenzepine (10 nmol/L) on fade produced by antinicotinic agents at 50 Hz was opposite to that observed with TOF stimulation. Blockade of adenosine A(2A) receptors with ZM 241385 (10 nmol/L) attenuated TOF(fade) caused by all antinicotinic drugs tested, with the exception of the 'pure' presynaptic nicotinic antagonist hexamethonium. ZM 241385 was the only compound tested in this series that facilitated recovery from tetanic fade produced by cisatracurium. 3. The data suggest that distinct antinicotinic relaxants interfere with fine-tuning neuromuscular adaptations to motor nerve stimulation patterns via activation of presynaptic muscarinic and adenosine receptors. These results support the use of A(2A) receptor antagonists together with atropine to facilitate recovery from antinicotinic neuromuscular blockade.
Collapse
Affiliation(s)
- Monalisa W Pereira
- Department of Pharmacology and Therapeutic, State University of Maringá, Maringa, Paraná, Brazil
| | | | | |
Collapse
|
23
|
Almeida MCS, Locks GDF. Sugammadex: new questions on reversal. Rev Bras Anestesiol 2012; 62:593-5. [PMID: 22793975 DOI: 10.1016/s0034-7094(12)70158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Maria Simões de Almeida C, de Figueiredo Locks G. Sugammadex(®): new questions on reversion. Rev Bras Anestesiol 2011; 61:829-31. [PMID: 22063384 DOI: 10.1016/s0034-7094(11)70092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Pereira MW, Bornia ECS, Correia-de-Sá P, Alves-Do-Prado W. Presynaptic muscarinic and adenosine receptors are involved in 2 Hz-induced train-of-four fade caused by antinicotinic neuromuscular relaxants in the rat. Clin Exp Pharmacol Physiol 2011; 38:764-70. [DOI: 10.1111/j.1440-1681.2011.05588.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Staals LM, Driessen JJ, Van Egmond J, De Boer HD, Klimek M, Flockton EA, Snoeck MMJ. Train-of-four ratio recovery often precedes twitch recovery when neuromuscular block is reversed by sugammadex. Acta Anaesthesiol Scand 2011; 55:700-7. [PMID: 21574968 DOI: 10.1111/j.1399-6576.2011.02448.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sugammadex reverses rocuronium-induced neuromuscular block (NMB). In all published studies investigating sugammadex, the primary outcome parameter was a train-of-four (TOF) ratio of 0.9. The recovery time of T1 was not described. This retrospective investigation describes the recovery of T1 vs. TOF ratio after the reversal of NMB with sugammadex. METHODS Two studies were analyzed. In study A, a phase II dose-finding study, ASA I-II patients received an intravenous (IV) dose of rocuronium 1.2 mg/kg, followed by an IV dose of sugammadex (2.0, 4.0, 8.0, 12.0 or 16.0 mg/kg) or placebo (0.9% saline) after 5 min. In study B, a phase III trial comparing patients with renal failure and healthy controls, rocuronium 0.6 mg/kg was used to induce NMB; sugammadex 2.0 mg/kg was administered at reappearance of T2. Neuromuscular monitoring was performed by acceleromyography and TOF nerve stimulation. The primary efficacy variable was time from the administration of sugammadex to recovery of the TOF ratio to 0.9. Retrospectively, the time to recovery of T1 to 90% was calculated. RESULTS After the reversal of rocuronium-induced NMB with an optimal dose of sugammadex [16 mg/kg (A) or 2 mg/kg (B)], the TOF ratio recovered to 0.9 significantly faster than T1 recovered to 90%. Clinical signs of residual paralysis were not observed. CONCLUSION After the reversal of NMB by sugammadex, full recovery of the TOF ratio is possible when T1 is still depressed. The TOF ratio as the only measurement for the adequate reversal of NMB by sugammadex may not always be reliable. Further investigations for clinical implications are needed.
Collapse
Affiliation(s)
- L M Staals
- Department of Anaesthesiology, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Noronha-Matos JB, Morais T, Trigo D, Timóteo MA, Magalhães-Cardoso MT, Oliveira L, Correia-de-Sá P. Tetanic failure due to decreased endogenous adenosine A(2A) tonus operating neuronal Ca(v) 1 (L-type) influx in Myasthenia gravis. J Neurochem 2011; 117:797-811. [PMID: 21323926 DOI: 10.1111/j.1471-4159.2011.07216.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In healthy motor endplates, tetanic depression is overcome by tonic adenosine A(2A) -receptor-mediated facilitation of transmitter release. The A(2A) receptor operates a coordinated shift from fast-desensitizing Ca(v) 2.1 (P/Q) calcium influx to long-lasting Ca(V) 1 (L) channels on motor nerve terminals. This study aimed at investigating whether A(2A) receptors-operated Ca(2+) influx via Ca(V) 1 (L)-type channels contribute to sustain acetylcholine release evoked by 50 Hz-bursts in toxin-induced Myasthenia gravis (TIMG) rats. In contrast to control animals, inhibition of [(3) H]acetylcholine (ACh) release by the Ca(V) 2.1 (P/Q) channel blocker, ω-Agatoxin IVA (100 nM), in TIMG rats had a higher magnitude than that observed with the Ca(V) 1 (L) channel blocker, nifedipine (1 μM). Adenosine deaminase (0.5 U/mL) and the A(2A) receptor antagonist, ZM 241385 (50 nM), decreased [(3) H]ACh release by a similar amount in control rats, but their effects were smaller in magnitude in myasthenic animals. The adenosine precursor, AMP (100 μM), increased (~40%) ACh release in both control and TIMG animals. Blockade of A(2A) , but not of A(1) , receptors prevented AMP-induced facilitation of transmitter release; nifedipine (1 μM) mimicked the effect of the A(2A) receptor antagonist. Video-microscopy studies designed to measure real-time transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. Thus, impairment of the adaptive shift from Ca(V) 2.1 (P/Q) to Ca(V) 1 (L) channels may contribute to tetanic failure in myasthenic rats. This parallels the reduction of adenosine A(2A) receptor tonus in TIMG animals, which might be restored by exogenous application of AMP.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, L. Prof. Abel Salazar 2, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
Bornia ECS, Correia-de-Sá P, Alves-Do-Prado W. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity. Clin Exp Pharmacol Physiol 2011; 38:164-9. [DOI: 10.1111/j.1440-1681.2011.05476.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Grove CL, Szabo TM, McIntosh JM, Do SC, Waldeck RF, Faber DS. Fast synaptic transmission in the goldfish CNS mediated by multiple nicotinic receptors. J Physiol 2010; 589:575-95. [PMID: 21115642 DOI: 10.1113/jphysiol.2010.197608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Usually nicotinic receptors in the central nervous system only influence the strength of a signal between neurons. At a few critical connections, for instance some of those involved in the flight response, nicotinic receptors not only modulate the signal, they actually determine whether a signal is conveyed or not. We show at one of the few such connections accessible for study, up to three different nicotinic receptor subtypes mediate the signal. The subtypes appear to be clustered in separate locations. Depending on the number and combination of the subtypes present the signal can range from short to long duration and from low to high amplitude. This provides a critical connection with a built-in plasticity and may enable it to adapt to a changing environment.
Collapse
Affiliation(s)
- Charlotte L Grove
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Ivermectin effects on motor coordination and contractions of isolated rat diaphragm. Res Vet Sci 2010; 91:426-33. [PMID: 20971486 DOI: 10.1016/j.rvsc.2010.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/20/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Ivermectin, the antiparasitic drug from the macrocyclic lactones class raises attention due to its high efficiency against nematodes and arthropods and very specific toxic and side effects that it may produce in host. Dominant clinical symptoms of adverse effects and toxicity of ivermectin in animals are tremor, ataxia, CNS depression and coma which often results in mortality. In our study increasing intravenous doses of ivermectin, (6 or more times higher than therapeutic dose: 1.25, 2.5, 3.75, 5.0, 6.25 and 7.5 mg/kg), caused dose-dependent disturbance of motor coordination in treated rats. The median effective dose (ED50) that was able to impair the rota-rod performance in rats treated 3 min before testing was 2.52 mg/kg. This effect weakens over time, while in the rats treated 60 min before the rota-rod test, ED50 of ivermectin was 4.21 mg/kg. Whereas, all tested doses of ivermectin did not cause any other clinical symptoms of toxicity. Ivermectin has no effect on the contractions of isolated diaphragm caused by the EFS, which effectively blocked mecamylamine (100 μM) and pancuronium (1 and 2 μM). Effect on motor coordination is the first detectable clinical symptom of ivermectin toxicity and apparently is a result of its central effects.
Collapse
|
31
|
Characterisation of the heterotrimeric presynaptic phospholipase A(2) neurotoxin complex from the venom of the common death adder (Acanthophis antarcticus). Biochem Pharmacol 2010; 80:277-87. [PMID: 20361942 DOI: 10.1016/j.bcp.2010.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/16/2010] [Accepted: 03/24/2010] [Indexed: 11/23/2022]
Abstract
While Australo-Papuan death adder neurotoxicity is generally considered to be due to the actions of reversible competitive postsynaptic alpha-neurotoxins, the neurotoxic effects are often poorly reversed by antivenom or anticholinesterases. This suggests that the venom may contain a snake presynaptic phospholipase A(2) (PLA(2)) neurotoxin (SPAN) that binds irreversibly to motor nerve terminals to inhibit neurotransmitter release. Using size-exclusion liquid chromatography under non-reducing conditions, we report the isolation and characterisation of a high molecular mass SPAN complex, P-elapitoxin-Aa1a (P-EPTX-Aa1a), from the venom of the common death adder Acanthophis antarcticus. Using the chick biventer-cervicis nerve-muscle preparation, P-EPTX-Aa1a (44,698Da) caused inhibition of nerve-evoked twitch contractions while responses to cholinergic agonists and KCl remained unaffected. P-EPTX-Aa1a also produced significant fade in tetanic contractions and a triphasic timecourse of neuromuscular blockade. These actions are consistent with other SPANs that inhibit acetylcholine release. P-EPTX-Aa1a was found to be a heterotrimeric complex composed of alpha, beta and gamma-subunits in a 1:1:1 stoichiometry with each subunit showing significant N-terminal sequence homology to the subunits of taipoxin, a SPAN from Oxyuranus s. scutellatus. Like taipoxin, only the alpha-chain produced any signs of neurotoxicity or displayed significant PLA(2) enzymatic activity. Preincubation with monovalent death adder antivenom or suramin, or inhibition of PLA(2) activity by incubation with 4-bromophenacyl bromide, either prevented or significantly delayed the onset of toxicity by P-EPTX-Aa1a. However, antivenom failed to reverse neurotoxicity. Early intervention with antivenom may therefore be important in severe cases of envenomation by A. antarcticus, given the presence of potent irreversible presynaptic neurotoxins.
Collapse
|
32
|
Bornia ECS, Bando E, Machinski M, Pereira MW, Alves-Do-Prado W. Presynaptic M1, M2, and A1 receptors play roles in tetanic fade induced by pancuronium or cisatracurium. J Anesth 2009; 23:513-9. [PMID: 19921360 DOI: 10.1007/s00540-009-0790-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/08/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE We investigated whether presynaptic facilitatory M1 and/or inhibitory M2 muscarinic receptors contributed to pancuronium- and cisatracurium-induced tetanic fade. METHODS Phrenic nerve-diaphragm muscle preparations of rats were indirectly stimulated with tetanic frequency (75 +/- 3.3 Hz; mean +/- SD). Doses of pancuronium, cisatracurium, hexamethonium, and d-tubocurarine for producing approximately 25% fade were determined. The effects of pirenzepine and methoctramine, blockers of presynaptic M1 and M2 receptors, respectively, on the tetanic fade were investigated. RESULTS The concentrations required for approximately 25% fade were 413 microM for hexamethonium (26.8 +/- 2.4% 4% fade), 55 nM for d-tubocurarine (28.7 +/- 2.55% fade), 0.32 microM for pancuronium (25.4 +/- 2.2% fade), and 0.32 microM for cisatracurium (24.7 +/- 0.8% fade). Pirenzepine or methoctramine alone did not produce the fade. Methoctramine, 1 microM, attenuated the fade induced by hexamethonium (to 16.0 +/- 2.5% fade), d-tubocurarine (to 6.0 +/- 1.6 fade), pancuronium (to 8.0 +/- 4.0% fade), and cisatracurium (to 11.0 +/- 3.3% fade). 10 nM pirenzepine attenuated only the fades produced by pancuronium (to 5.0 +/- 0.11% fade) and cisatracurium (to 13.3 +/- 5.3% fade). Cisatracurium (0.32 microM) showed antiacetylcholinesterase activity (in plasma, 14.2 +/- 1.6%; 6%; in erythrocyt 17.2 +/- 2.66%) similar to that of pancuronium (0.32 microM). The selective A1 receptor blocker, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 2.5 nM), also attenuated the fades induced by pancuronium and cisatracurium. CONCLUSION The tetanic fades produced by pancuronium and cisatracurium depend on the activation of presynaptic inhibitory M2 receptors; these agents also have anticholinesterase activities. The fades induced by these agents also depend on the activation of presynaptic inhibitory A1 receptors through the activation of stimulatory M1 receptors by acetylcholine.
Collapse
|
33
|
Apamin reduces neuromuscular transmission by activating inhibitory muscarinic M(2) receptors on motor nerve terminals. Eur J Pharmacol 2009; 626:239-43. [PMID: 19818752 DOI: 10.1016/j.ejphar.2009.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/08/2009] [Accepted: 09/28/2009] [Indexed: 11/20/2022]
Abstract
This study was undertaken to investigate the mechanism by which the toxin from the bee venom, apamin, might exert beneficial effects in patients suffering from myotonic dystrophy. The effects of apamin were compared with those produced by another potassium channel blocker, 4-aminopyridine, on rat hemidiaphragm preparations stimulated at a 100 Hz frequency via the phrenic nerve. Apamin and 4-aminopyridine increased nerve-evoked tetanic fade without changing the maximal tetanic tension. The inhibitory effect of apamin was mimicked by acetylcholine. In contrast with apamin, 4-aminopyridine increased the amplitude of muscle contractions induced by nerve stimulation at 0.2 Hz frequency. All these compounds were devoid of effect when diaphragm muscle fibres were stimulated directly in the presence of the neuromuscular blocker, D-tubocurarine. The muscarinic M(2) receptor antagonist, methoctramine, prevented the inhibitory effects of both apamin and acetylcholine. Blockade of presynaptic facilitatory muscarinic M(1) and nicotinic receptors respectively with pirenzepine and hexamethonium increased apamin-induced tetanic fade. Data suggest that apamin inhibits neuromuscular transmission by a mechanism independent of the blockade of Ca(2+)-activated K(+) channels, which might involve the activation of inhibitory muscarinic M(2) receptors on motor nerve terminals. Such a mechanism may be the origin of the beneficial effect of apamin controlling muscle excitability in patients suffering from myotonic diseases.
Collapse
|
34
|
Bom A, Hope F, Rutherford S, Thomson K. Preclinical pharmacology of sugammadex. J Crit Care 2009; 24:29-35. [PMID: 19272536 DOI: 10.1016/j.jcrc.2008.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/31/2008] [Indexed: 11/19/2022]
Abstract
Since the introduction of nondepolarizing neuromuscular blocking agents, acetylcholinesterase inhibitors have been used to increase the speed of recovery from neuromuscular blockade. The major disadvantages of acetylcholinesterase inhibitors are their lack of activity against profound neuromuscular blockade and their activity outside the neuromuscular junction resulting in unwanted side effects, requiring cotreatment with a muscarinic antagonist. An alternative to acetylcholinesterase inhibitors is the encapsulating agent sugammadex. This agent has been specifically designed to encapsulate the steroidal neuromuscular blocking agents rocuronium and vecuronium. This review describes the effects of sugammadex in in vitro tissue and in vivo animal experiments. The encapsulation approach allows reversal of any degree of neuromuscular blockade because the dose of sugammadex can be adjusted to encapsulate sufficient neuromuscular blocking molecules to cause effective reversal. Because this interaction is a drug-drug interaction, reversal can be achieved very fast but is limited by the circulation time. Sugammadex is also effective against neuromuscular blockade under conditions with reduced acetylcholine release, which potentiate the action of neuromuscular blocking agents. Sugammadex does not cause cholinergic side effects, preventing the need of coadministration of muscarinic antagonists. Because of these properties, sugammadex has the potential to become a very useful drug for the management of neuromuscular blockade.
Collapse
Affiliation(s)
- Anton Bom
- Department of Pharmacology, Schering-Plough Corporation, Newhouse, ML1 5SH Scotland, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Oliveira L, Timóteo MA, Correia-de-Sá P. Negative crosstalk between M1 and M2 muscarinic autoreceptors involves endogenous adenosine activating A1 receptors at the rat motor endplate. Neurosci Lett 2009; 459:127-31. [DOI: 10.1016/j.neulet.2009.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
|
36
|
Abstract
Neuromuscular transmission at the skeletal muscle occurs when a quantum of acetylcholine from the nerve ending is released and binds to the nicotinic acetylcholine receptors on the postjunctional muscle membrane. The nicotinic acetylcholine receptors on the endplate respond by opening channels for the influx of sodium ions and subsequent endplate depolarisation leads to muscle contraction. The acetylcholine immediately detaches from the receptor and is hydrolysed by acetylcholinesterase enzyme. Suxamethonium is a cholinergic agonist stimulating the muscle nicotinic acetylcholine receptors prior to causing neuromuscular block. Non-depolarising neuromuscular blocking drugs bind to the nicotinic acetylcholine receptors preventing the binding of acetylcholine. Non-depolarising neuromuscular blocking drugs also inhibit prejunctional alpha3beta2 nicotinic acetylcholine autoreceptors, which can be seen in the clinical setting as train-of-four fade. In some pathological states such as denervation, burns, immobilisation, inflammation and sepsis, there is expression of other subtypes of nicotinic acetylcholine receptors with upregulation of these receptors throughout the muscle membrane. The responses of these receptors to suxamethonium and non-depolarising neuromuscular blocking drugs are different and explain some of the aberrant responses to neuromuscular blocking drugs.
Collapse
Affiliation(s)
- J A J Martyn
- Harvard Medical School, Director Clinical & Biological Pharmacology Laboratory, Department of Anesthesiology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
37
|
Tuning adenosine A1 and A2A receptors activation mediates l-citrulline-induced inhibition of [3H]-acetylcholine release depending on nerve stimulation pattern. Neurochem Int 2008; 52:834-45. [DOI: 10.1016/j.neuint.2007.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 11/21/2022]
|
38
|
Woloszczuk-Gebicka B, Wyska E, Grabowski T. Sevoflurane increases fade of neuromuscular response to TOF stimulation following rocuronium administration in children. A PK/PD analysis. Paediatr Anaesth 2007; 17:637-46. [PMID: 17564645 DOI: 10.1111/j.1460-9592.2006.02181.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sevoflurane enhances neuromuscular block produced by rocuronium, affecting not only single twitch response but also the response to high-frequency stimulation, increasing tetanic [or train-of-four (TOF)] fade. METHODS We compared the degree of fade during spontaneous recovery from rocuronium-induced neuromuscular block in 24 children (3-11 years old, ASA groups I and II), anesthetized with nitrous oxide-sevoflurane (one MAC, endtidal concentration) or nitrous oxide-fentanyl. Neuromuscular transmission was monitored electromyographically (EMG), stimulating the ulnar nerve at the wrist with TOF, 2 Hz for 2 s, repeated at 20-s intervals and recording EMG potential from adductor pollicis brevis. Depression of the fourth twitch, T4, was used as a measure of fade. Following an intubating dose of rocuronium, 0.6 mgxkg(-1), continuous infusion of rocuronium was given to maintain stable 90-99% T1 depression. Plasma concentration of rocuronium was determined with high performance liquid chromatography with electrochemical detection (HPLC-EC) method at the moment of discontinuation of rocuronium infusion and 10, 20, 30, 40, 50, 60, and 75 min afterwards. A two compartment model was used for pharmacokinetic (PK) calculations. PK parameters were fixed and pharmacodynamic data were fitted to effect compartment model proposed by Sheiner. RESULTS Sevoflurane reduced rocuronium concentration in effect compartment producing 50% inhibition of both T1 and T4 response and significantly delayed not only T1, but also T4 recovery. CONCLUSIONS Potentiating effect of sevoflurane on rocuronium-induced neuromuscular block influences not only postsynaptic, but also the presynaptic part of the neuromuscular junction, enhancing fade of neuromuscular response to high-frequency stimulation. The intensity of this latter effect is clinically relevant.
Collapse
|
39
|
Dilger JP, Vidal AM, Liu M, Mettewie C, Suzuki T, Pham A, Demazumder D. Roles of amino acids and subunits in determining the inhibition of nicotinic acetylcholine receptors by competitive antagonists. Anesthesiology 2007; 106:1186-95. [PMID: 17525594 PMCID: PMC2367005 DOI: 10.1097/01.anes.0000267602.94516.7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Binding sites for agonists and competitive antagonists (nondepolarizing neuromuscular blocking agents) are located at the alpha-delta and alpha-epsilon subunit interfaces of adult nicotinic acetylcholine receptors. Most information about the amino acids that participate in antagonist binding comes from binding studies with (+)-tubocurarine and metocurine. These bind selectively to the alpha-epsilon interface but are differentially sensitive to mutations. To test the generality of this observation, the authors measured current inhibition by five competitive antagonists on wild-type and mutant acetylcholine receptors. METHODS HEK293 cells were transfected with wild-type or mutant (alphaY198F, epsilonD59A, epsilonD59N, epsilonD173A, epsilonD173N, deltaD180K) mouse muscle acetylcholine receptor complementary DNA. Outside-out patches were excised and perfused with acetylcholine in the absence and presence of antagonist. Concentration-response curves were constructed to determine antagonist IC50. An antagonist-removal protocol was used to determine dissociation and association rates. RESULTS Effects of mutations were antagonist specific. alphaY198F decreased the IC50 of (+)-tubocurarine 10-fold, increased the IC50 of vecuronium 5-fold, and had smaller effects on other antagonists. (+)-Tubocurarine was the most sensitive antagonist to epsilonD173 mutations. epsilonD59 mutations had large effects on metocurine and cisatracurium. deltaD180K decreased inhibition by pancuronium, vecuronium, and cisatracurium. Inhibition by these antagonists was increased for receptors containing two delta subunits but no epsilon subunit. Differences in IC50 arose from differences in both dissociation and association rates. CONCLUSION Competitive antagonists exhibited different patterns of sensitivity to mutations. Except for pancuronium, the antagonists were sensitive to mutations at the alpha-epsilon interface. Pancuronium, vecuronium, and cisatracurium were selective for the alpha-delta interface. This suggests the possibility of synergistic inhibition by pairs of antagonists.
Collapse
Affiliation(s)
- James P Dilger
- Department of Anesthesiology, Stony Brook University, NY 11794-8480, USA, and Department of Anesthesiology, Surugadai Nihon University Hospital, Kanda, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Balezina OP, Fedorin VV, Gaidukov AE. Effect of nicotine on neuromuscular transmission in mouse motor synapses. Bull Exp Biol Med 2007; 142:17-21. [PMID: 17369892 DOI: 10.1007/s10517-006-0280-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nicotine (10 nM) inhibits rhythmic activity of the neuromuscular synapse in mice. This effect was prevented by alpha-cobratoxin and apamin. Hence, the effects of nicotine are realized via presynaptic neuronal nicotinic cholinoceptors and Ca(2+)-activated potassium channels.
Collapse
Affiliation(s)
- O P Balezina
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University.
| | | | | |
Collapse
|
41
|
Eikermann M, Gerwig M, Hasselmann C, Fiedler G, Peters J. Impaired neuromuscular transmission after recovery of the train-of-four ratio. Acta Anaesthesiol Scand 2007; 51:226-34. [PMID: 17261149 DOI: 10.1111/j.1399-6576.2006.01228.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Residual neuromuscular blockade may increase the risk of development of post-operative pulmonary complications, but is difficult to detect clinically. It was speculated that patients may have impaired neuromuscular transmission after surgery of long duration, despite the recovery of the train-of-four (TOF) ratio. METHODS The muscle force (mechanomyography), motor compound muscle action potential amplitude and fatigue of the adductor pollicis (AP) muscle were assessed after recovery of the TOF ratio to 0.9. Thirteen patients receiving repetitive administration of neuromuscular blocking agents (NMBAs) during surgery (median, 5.3 h; interquartile range, 3.4-6 h) were studied post-operatively in the intensive care unit. At the time of the measurements, patients were scheduled for extubation and the AP TOF ratio amounted to a mean (standard deviation, SD) of 0.94 (0.05). Six healthy volunteers of similar age, weight and gender were studied for comparison. Force-frequency curves were generated by stimulation (10-80 Hz) of the ulnar nerve, and the AP electromyogram (EMG) amplitude was measured, in parallel, before and after evoked muscle fatigue. RESULTS The maximum AP force at a stimulation frequency of 20-80 Hz was significantly lower in patients than in controls [40 N (16 N) vs. 65 N (18 N) at 80 Hz]. In patients, but not in controls, the EMG amplitude decreased with increasing nerve stimulation frequency, and a tetanic fade of both force and EMG, amounting to 0.41 (0.33) (EMG) and 0.61 (0.35) (mechanomyography) at 80 Hz, was observed. Force after fatiguing contractions did not differ between the groups. CONCLUSION After repetitive administration of NMBAs during surgery, even with recovery of the TOF ratio to 0.9 or more, muscle weakness from impaired neuromuscular transmission can occur. The clinician should consider that post-operative recovery of the TOF ratio to 0.9 does not exclude an impairment of neuromuscular transmission.
Collapse
Affiliation(s)
- M Eikermann
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
42
|
Serra CSM, Oliveira AC. Cisatracurium: myographical and electrophysiological studies in the isolated rat muscle. Fundam Clin Pharmacol 2006; 20:291-8. [PMID: 16671964 DOI: 10.1111/j.1472-8206.2006.00395.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myographical and electrophysiological studies of cisatracurium were performed, in vitro, in the isolated sciatic nerve-extensor digitorum longus muscle preparation of the rat. Indirect twitches were generated at 0.1 Hz and tetanic contractions at 50 Hz. endplate potentials (epps) were generated in trains of 50 Hz. The electrophysiological variables used in the analysis of the epps were: amplitude of the first epp in the train, average amplitude of the 30 degrees to the 59 degrees epp in the train (epps-plateau), tetanic rundown (percent loss in amplitude of epps-plateau relative to the first epp in the train), quantal size and quantal content. The myographical results showed that the inhibitory concentration 50% (IC(50)) of cisatracurium for the blockade of twitches (0.48 microm) is 12 times its IC(50) for the induction of tetanic fade (0.04 microm). The electrophysiological results showed a concentration dependent decrease in the amplitudes of first epps in the trains and of epps-plateau in the two used concentrations (0.13 microm and 0.38 microm). The tetanic rundown was intensified only in the presence of the higher (0.38 microm) concentration of cisatracurium. In cisatracurium 0.13 microm (a concentration which affects only tetanic contractions, inducing their fade, while leaving the twitch unaffected) there was a decrease in the quantal content of the first epp and of epps-plateau in the train. In cisatracurium (0.38 microm), a concentration, which affects the twitch, there was a decrease of the quantal size and of quantal content of epps-plateau, but not of the quantal content of the first epp in the train. The results indicate that the fade of the tetanic contraction induced by cisatracurium at the concentration of 0.13 microm is entirely because of a pre-synaptic blocking effect while the decrease in the twitch induced by cisatracurium at the concentration of 0.38 microm is due to a post-synaptic blocking effect.
Collapse
Affiliation(s)
- C S M Serra
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
43
|
Oliveira L, Correia-de-Sá P. Dissociation between M1-facilitation of acetylcholine release and crosstalk with A2A- and M2-receptors on rat motoneurons. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Oliveira L, Correia-de-Sá P. Protein kinase A and Ca(v)1 (L-Type) channels are common targets to facilitatory adenosine A2A and muscarinic M1 receptors on rat motoneurons. Neurosignals 2006; 14:262-72. [PMID: 16301841 DOI: 10.1159/000088642] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 07/21/2005] [Indexed: 11/19/2022] Open
Abstract
At the rat motor endplate, pre-synaptic facilitatory adenosine A2A and muscarinic M1 receptors are mutually exclusive. We investigated whether these receptors share a common intracellular signalling pathway. Suppression of McN-A-343-induced M1 facilitation of [3H]ACh release was partially recovered when CGS21680C (an A2A agonist) was combined with the cyclic AMP antagonist Rp-cAMPS. Forskolin, rolipram and 8-bromo-cyclic AMP mimicked CGS21680C blockade of M1 facilitation. Both Rp-cAMPs and nifedipine reduced augmentation of [3H]ACh release by McN-A-343 and CGS21680C. Activation of M1 and A2A receptors enhanced Ca2+ recruitment through nifedipine-sensitive channels. Nifedipine inhibition revealed by McN-A-343 was prevented by chelerythrine (a PKC inhibitor) and Rp-cAMPS, suggesting that Ca(v)1 (L-type) channels phosphorylation by PKA and PKC is required. Rp-cAMPS inhibited [3H]ACh release in the presence of phorbol 12-myristate 13-acetate, but PKC inhibition by chelerythrine had no effect on release in the presence of 8-bromo-cyclic AMP. This suggests that the involvement of PKA may be secondary to M1-induced PKC activation. In conclusion, competition of M1 and A2A receptors to facilitate ACh release from motoneurons may occur by signal convergence to a common pathway involving PKA activation and Ca2+ influx through Ca(v)1 (L-type) channels.
Collapse
Affiliation(s)
- Laura Oliveira
- Laboratório de Farmacologia, Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
45
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 716] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|
46
|
Naguib M, Lien CA, Aker J, Eliazo R. Posttetanic potentiation and fade in the response to tetanic and train-of-four stimulation during succinylcholine-induced block. Anesth Analg 2004; 98:1686-1691. [PMID: 15155329 DOI: 10.1213/01.ane.0000113544.21754.a5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED We designed this study to confirm anecdotal observations that neuromuscular block after a single administration of succinylcholine is characterized by fade to train-of-four (TOF) or tetanic stimulation, as well as posttetanic potentiation. This prospective, randomized, 2-center observational study involved 100 patients. Patients were allocated to 1 of 5 groups and received 0.1, 0.3, 0.5, 0.75, or 1.0 mg/kg succinylcholine during propofol/fentanyl/nitrous oxide anesthesia. Neuromuscular function was monitored by TOF using mechanomyography. At 10%-20% spontaneous recovery of the first twitch of TOF, the mode of stimulation was changed from TOF to 1-Hz single-twitch stimulation followed by a tetanic stimulus (50 Hz) for 5 s. Three seconds later, the single twitch (1 Hz) was applied again for approximately 30 s followed by TOF stimulation until full recovery of the TOF response. Succinylcholine-induced neuromuscular block had the following characteristics: 1) twitch augmentation before twitch depression, which was seen more frequently in patients given smaller doses (0.1 and 0.3 mg/kg) than in those given larger doses (0.5-1.0 mg/kg); 2) TOF fade during onset and recovery of the block; 3) tetanic fade; and 4) and posttetanic potentiation. Posttetanic potentiation was related to the pretetanic twitch height but was not related to the dose of succinylcholine administered. Some characteristics of Phase II block were detectable during onset and recovery from doses of succinylcholine as small as 0.30 mg/kg. Posttetanic potentiation and fade in response to train-of-four and tetanic stimuli are characteristics of neuromuscular block after bolus administration of different doses of succinylcholine. IMPLICATIONS Posttetanic potentiation and fade in response to train-of-four and tetanic stimuli are characteristics of neuromuscular block after bolus administration of different doses of succinylcholine. We also conclude that some characteristics of a Phase II block are evident from an initial dose (i.e., as small as 0.3 mg/kg) of succinylcholine.
Collapse
Affiliation(s)
- Mohamed Naguib
- *Department of Anesthesia, University of Iowa College of Medicine, Iowa City, Iowa; and †Department of Anesthesiology, The Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York
| | | | | | | |
Collapse
|