1
|
Santos-Carvalho A, Álvaro AR, Martins J, Ambrósio AF, Cavadas C. Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol 2013; 112:70-9. [PMID: 24184719 DOI: 10.1016/j.pneurobio.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the central nervous system, including the retina. Retinal cells, in particular neurons, astrocytes, and Müller, microglial and endothelial cells express this peptide and its receptors (Y1, Y2, Y4 and/or Y5). Several studies have shown that NPY is expressed in the retina of various mammalian and non-mammalian species. However, studies analyzing the distribution of NPY receptors in the retina are still scarce. Although the physiological roles of NPY in the retina have not been completely elucidated, its early expression strongly suggests that NPY may be involved in the development of retinal circuitry. NPY inhibits the increase in [Ca(2+)]i triggered by elevated KCl in retinal neurons, protects retinal neural cells against toxic insults and induces the proliferation of retinal progenitor cells. In this review, we will focus on the roles of NPY in the retina, specifically proliferation, neuromodulation and neuroprotection. Alterations in the NPY system in the retina might contribute to the pathogenesis of retinal degenerative diseases, such as diabetic retinopathy and glaucoma, and NPY and its receptors might be viewed as potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Ana Santos-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - João Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal; AIBILI-Association for Innovation and Biomedical Research on Light and Image, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Ghahramanian Golzar M, Babri S, Ataie Z, Ebrahimi H, Mirzaie F, Mohaddes G. NPY Receptors Blockade Prevents Anticonvulsant Action of Ghrelin in the Hippocampus of Rat. Adv Pharm Bull 2013; 3:265-71. [PMID: 24312846 DOI: 10.5681/apb.2013.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Ghrelin has been shown to have antiepileptic function. However, the underlying mechanisms by which, ghrelin exerts its antiepileptic effects are still unclear. In the present study, we investigated whether neuropeptide Y (NPY) mediates ghrelin anticonvulsant effect in the brain through its Y1, Y2 or Y5 receptors. METHODS Male Wistar rats were bilaterally microinjected with ghrelin 0.3 nmol/μl/side and NPY antagonists; GR231118 (Y1 receptor antagonist), BIIE0246 (Y2 receptor antagonist), CGP71683 (Y5 receptor antagonist) or solvents (Saline, DMSO) into the dorsal hippocampus 20 minutes before ghrelin administration. Thirty minutes after ghrelin microinjection, a single convulsive dose of pentylenetetrazole (PTZ) (50 mg/kg) was injected intraperitoneally (ip). Afterwards, duration of seizure and total seizure score (TSS) were assessed for 30 minutes in all animals. RESULTS Intrahippocampal injection of 0.3 nmol/μl/side ghrelin decreased duration of seizure and TSS induced by PTZ. The suppression of both duration (p<0.001) and TSS (p<0.001) induced by ghrelin in hippocampus were significantly blocked by GR231118 (10 μg/μl/side), BIIE0246 (400 pmol/μl/side) and CGP 71683A (5 nmol/μl/side). CONCLUSION Our findings suggest that NPY Y1, Y2 and Y5 receptors in the hippocampus may somehow mediate the anticonvulsive action of ghrelin. Therefore, it is possible to speculate that ghrelin acts in the hippocampus to modulate seizures via NPY.
Collapse
|
3
|
Trent NL, Menard JL. Lateral septal infusions of the neuropeptide Y Y2 receptor agonist, NPY(13-36) differentially affect different defensive behaviors in male, Long Evans rats. Physiol Behav 2012; 110-111:20-9. [PMID: 23274501 DOI: 10.1016/j.physbeh.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022]
Abstract
The lateral septum has been extensively implicated in regulating anxiety-related defensive behaviors in the rat. Neuropeptide Y (NPY) contributes to anxiety, likely through activity at the NPY Y1 and/or Y2 receptor binding sites. Although the lateral septum contains the highest density of Y2 receptors in brain, the involvement of this receptor in anxiety-related defensive behaviors is not clear. Thus, the purpose of the current study was to characterize lateral septal Y2 receptor contributions to rats' defensive responses to threat and/or potentially threatening environments. We investigated this by infusing the NPY Y2 agonist NPY13-36 into the lateral septum and testing rats across a battery of animal models of anxiety (Experiment 1). To verify the role of Y2 in mediating the observed effects, rats were pre-infused with the potent and highly selective Y2 antagonist BIIE 0246 prior to infusion with NPY13-36 (Experiment 2). Infusions of NPY13-36 into the lateral septum increased rats' open-arm exploration in the elevated plus-maze test (p<0.01) and decreased the proportion of rats' that buried (p<0.05) as well as their latency to initiate burying in the shock-probe burying test (p<0.01). By contrast, NPY13-36 did not affect either anxiety- or appetite-related responses in the novelty-induced suppression of feeding test (all ps>0.3; Experiment 1). Pre-treatment with the Y2 antagonist BIIE 0246 prevented the anxiolytic-like actions of NPY13-36 in the plus-maze but not in the shock-probe test (Experiment 2). Thus, it appears that the anxiolytic-like actions of lateral septal NPY13-36 are mediated by the Y2 receptor in a test-specific manner.
Collapse
Affiliation(s)
- Natalie L Trent
- Centre for Neuroscience Studies, Queen's University, 62 Arch Street, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
4
|
Lautar SL, Rojas C, Slusher BS, Wozniak KM, Wu Y, Thomas AG, Waldon D, Li W, Ferraris D, Belyakov S. DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice. Brain Res 2005; 1048:177-84. [PMID: 15925329 DOI: 10.1016/j.brainres.2005.04.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 11/23/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition.
Collapse
Affiliation(s)
- Susan L Lautar
- Guilford Pharmaceuticals, Inc., 6611 Tributary Street, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Woldbye DPD, Nanobashvili A, Sørensen AT, Husum H, Bolwig TG, Sørensen G, Ernfors P, Kokaia M. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors. Neurobiol Dis 2005; 20:760-72. [PMID: 15979311 DOI: 10.1016/j.nbd.2005.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 04/14/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo.
Collapse
Affiliation(s)
- David P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The endogenous NPY system in the brain is centrally involved in seizure regulation. The present paper reviews the evidence that exogenously applied NPY receptor ligands can inhibit epileptic seizures in various rodent in vitro and in vivo models. Agonists at Y2 and/or Y5 receptors and antagonists at Y1 receptors appear to inhibit seizures, depending on the seizure model studied. Although progress has been made, further studies are needed using transgenic animals as well as novel selective agonists and antagonists to firmly identify the NPY receptors mediating antiepileptic effects. This may lead to the development of future antiepileptic drug treatments targeting the NPY system.
Collapse
Affiliation(s)
- D P D Woldbye
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital and Department of Pharmacology, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
7
|
Nanobashvili A, Woldbye DPD, Husum H, Bolwig TG, Kokaia M. Neuropeptide Y Y5 receptors suppress in vitro spontaneous epileptiform bursting in the rat hippocampus. Neuroreport 2004; 15:339-43. [PMID: 15076765 DOI: 10.1097/00001756-200402090-00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in antiepileptic action in different in vivo and in vitro epilepsy models in rats and mice. Both Y2 and Y5 receptors could mediate the seizure-suppressant effect of NPY. However, lack of selective ligands precluded previous studies from conclusively evaluating the role of Y5 receptors in anti-epileptiform action of NPY. In the present study, using the new highly selective Y5 receptor antagonist, CGP71683A, and agonist, [cPP]hPP, we show that the Y5 receptor subtype is centrally involved in NPY-induced suppression of spontaneous epileptiform (interictaform) bursting in the CA3 area of rat hippocampal slices. This novel finding underscores the importance of Y5 receptors as a potential target for future antiepileptic therapy, particularly, for interictal components of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Avtandil Nanobashvili
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|