1
|
Seo J, Lee Y, Kim BS, Park J, Yang S, Yoon HJ, Yoo J, Park HS, Hong JJ, Koo BS, Baek SH, Jeon CY, Huh JW, Kim YH, Park SJ, Won J, Ahn YJ, Kim K, Jeong KJ, Kang P, Lee DS, Lim SM, Jin YB, Lee SR. A non-human primate model for stable chronic Parkinson's disease induced by MPTP administration based on individual behavioral quantification. J Neurosci Methods 2018; 311:277-287. [PMID: 30391524 DOI: 10.1016/j.jneumeth.2018.10.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The guidelines for applying individual adjustments to macaques according to the severity of behavioral symptoms during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment were provided to reproduce stable chronic Parkinsonism in a recent study (Potts et al., 2014). But, since there are insufficient guidelines regarding objective severity criteria of individual symptoms for adjustments of MPTP treatment, it is difficult to develop MPTP-induced chronic non-human primate (NHP) models with stable symptoms. NEW METHOD The individual adjustments of MPTP administration based on results of automatic quantification of global activity (GA) using a video-based tracking system were applied to develop MPTP-PD model. Low-dose (0.2 mg/kg) intramuscular injection was repeated continuously until GA was lower than 8% of baseline Parkinsonian behavior scores. The positron emission tomography imaging were used to follow the longitudinal course of Parkinson's disease (PD). RESULTS Significant reductions in GA and dopamine transporter activity, along with significant increases in Parkinsonian behavior scores were found from 4 to 48 weeks following the first administration. GA was correlated with the Parkinsonian behavior score. The dopamine transporter activity was correlated with GA and the Parkinsonian behavior score. However, it was not correlated with the total dose of MPTP. Damage of dopaminergic neuronal systems in the basal ganglia was confirmed by immunohistochemistry and Western blot. COMPARISON WITH EXISTING METHOD This study reinforces previous guidelines regarding production of NHP models with stable Parkinsonian symptoms. CONCLUSIONS This novel strategy of MPTP administration based on global activity evaluations provides an important conceptual advance for the development of chronic NHP Parkinsonian models.
Collapse
Affiliation(s)
- Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Hai-Jeon Yoon
- Department of Nuclear medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Jang Yoo
- Department of Nuclear medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jung-Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sang Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yu-Jin Ahn
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae, Republic of Korea
| | - Kang Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Philyong Kang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University School of Medicine, Seoul, Republic of Korea.
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Abstract
Positron emission tomography (PET) has revealed key insights into the pathophysiology of movement disorders. This paper will focus on how PET investigations of pathophysiology are particularly relevant to Parkinson disease, a neurodegenerative condition usually starting later in life marked by a varying combination of motor and nonmotor deficits. Various molecular imaging modalities help to determine what changes in brain herald the onset of pathology; can these changes be used to identify presymptomatic individuals who may be appropriate for to-be-developed treatments that may forestall onset of symptoms or slow disease progression; can PET act as a biomarker of disease progression; can molecular imaging help enrich homogenous cohorts for clinical studies; and what other pathophysiologic mechanisms relate to nonmotor manifestations. PET methods include measurements of regional cerebral glucose metabolism and blood flow, selected receptors, specific neurotransmitter systems, postsynaptic signal transducers, and abnormal protein deposition. We will review each of these methodologies and how they are relevant to important clinical issues pertaining to Parkinson disease.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University in St. Louis, St Louis, MO.
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St Louis, MO; Department of Radiology, Washington University in St. Louis, St Louis, MO; Department of Neuroscience, Washington University in St. Louis, St Louis, MO; Department of Physical Therapy, Washington University in St. Louis, St Louis, MO; Department of Occupational Therapy, Washington University in St. Louis, St Louis, MO
| |
Collapse
|
3
|
Differential effects of dopaminergic drugs on spontaneous motor activity in the common marmoset following pretreatment with a bilateral brain infusion of 6-hydroxydopamine. Behav Pharmacol 2018; 28:670-680. [PMID: 29099404 PMCID: PMC5690296 DOI: 10.1097/fbp.0000000000000353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The differential effects of dopaminergic drugs with different pharmacological profiles were investigated with respect to spontaneous motor activity in the common marmoset following pretreatment with a bilateral brain infusion of 6-hydroxydopamine (6-OHDA). Three marmosets received infusions of 6-OHDA (either 30 or 40 μg/side) into the bilateral dopamine-rich area running from the substantia nigra to the striatum. The motor activity of the 6-OHDA marmosets was compared with that of three intact marmosets. Following the administration of apomorphine (0.5 and 1 mg/kg, subcutaneously), the 6-OHDA group showed a tendency toward a brief increase in activity counts, suggesting denervation supersensitivity at the dopamine receptors. After the administration of methamphetamine (1 and 2 mg/kg, subcutaneously), the 6-OHDA group showed a significant decrease in activity counts, indicating limited dopamine release from the degenerated neurons. After the administration of l-3,4-dihydroxyphenylalanine (10 and 20 mg/kg, orally), the 6-OHDA group showed a significant increase in activity counts without hyperexcitation, consistent with the contribution of exogenous l-3,4-dihydroxyphenylalanine toward dopamine synthesis in the degenerated neurons. The present findings indicate that bilateral brain infusion of 6-OHDA in the marmoset may have preclinical utility as a primate model for investigating the behavioral properties of dopaminergic drugs in brains with dopaminergic neural deficits.
Collapse
|
4
|
Zou J, Weng RH, Chen ZY, Wei XB, Wang R, Chen D, Xia Y, Wang Q. Position Emission Tomography/Single-Photon Emission Tomography Neuroimaging for Detection of Premotor Parkinson's Disease. CNS Neurosci Ther 2016; 22:167-77. [PMID: 26776081 DOI: 10.1111/cns.12493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022] Open
Abstract
Premotor Parkinson's disease (PD) refers to a prodromal stage of Parkinson's disease (PD) during which nonmotor clinical features may be present. Currently, it is difficult to make an early diagnosis for premotor PD. Molecular imaging with position emission tomography (PET) or single-photon emission tomography (SPECT) offers a wide variety of tools for overcoming this difficulty. Indeed, molecular imaging techniques may play a crucial role in diagnosing, monitoring and evaluating the individuals with the risk for PD. For example, dopaminergic dysfunctions can be identified by detecting the expression of vesicular monoamine transporter (VMAT2) and aromatic amino acid decarboxylase (AADC) to evaluate the conditions of dopaminergic terminals functions in high-risk individuals of PD. This detection provides a sensitive and specific measurement of nonmotor symptoms (NMS) such as olfactory dysfunction, sleep disorders, and psychiatric symptoms in the high-risk patients, especially at the premotor phase. Molecular imaging technique is capable of detecting the dysfunction of serotonergic, noradrenergic, and cholinergic systems that are typically associated with premotor manifestations. This review discusses the importance of SPECT/PET applications in the detection of premotor markers preceding motor abnormalities with highlighting their great potential for early and accurate diagnosis of premotor symptoms of PD and its scientific significance.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui-Hui Weng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhao-Yu Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Bo Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Yun JW, Ahn JB, Kwon E, Ahn JH, Park HW, Heo H, Park JS, Kim H, Paek SH, Kang BC. Behavior, PET and histology in novel regimen of MPTP marmoset model of Parkinson's disease for long-term stem cell therapy. Tissue Eng Regen Med 2015; 13:100-109. [PMID: 30603390 DOI: 10.1007/s13770-015-0106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell technologies are particularly attractive in Parkinson's disease (PD) research although they occasionally need long-term treatment for anti-parkinsonian activity. Unfortunately, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) widely used as a model for PD has several limitations, including the risk of dose-dependent mortality and the difficulty of maintenance of PD symptoms during the whole experiment period. Therefore, we tested if our novel MPTP regimen protocol (2 mg/kg for 2 consecutive days and 1 mg/kg for next 3 consecutive days) can be maintained stable parkinsonism without mortality for long-term stem cell therapy. For this, we used small-bodied common marmoset monkeys (Callithrix jacchus) among several nonhuman primates showing high anatomical, functional, and behavioral similarities to humans. Along with no mortality, the behavioral changes involved in PD symptoms were maintained for 32 weeks. Also, the loss of jumping ability of the MPTP-treated marmosets in the Tower test was not recovered by 32 weeks. Positron emission tomography (PET) analysis revealed that remarkable decreases of bindings of 18F-FP-CIT were observed at the striatum of the brains of the marmosets received MPTP during the full period of the experiment for 32 weeks. In the substantia nigra of the marmosets, the loss of tyrosine hydroxylase (TH) immunoreactivity was also observed at 32 weeks following the MPTP treatment. In conclusion, our low-dose MPTP regimen protocol was found to be stable parkinsonism without mortality as evidenced by behavior, PET, and TH immunohistochemistry. This result will be useful for evaluation of possible long-term stem cell therapy for anti-parkinsonian activity.
Collapse
Affiliation(s)
- Jun-Won Yun
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Kwon
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae Hun Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Woo Park
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hwon Heo
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Jin-Sung Park
- 5Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
| | - Hyeonjin Kim
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea.,6Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,7Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
6
|
Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol 2014; 76:769-83. [PMID: 25363872 PMCID: PMC4245400 DOI: 10.1002/ana.24291] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 11/12/2022]
Abstract
In this grand rounds, we focus on development, validation, and application of neuroimaging biomarkers for Parkinson disease (PD). We cover whether such biomarkers can be used to identify presymptomatic individuals (probably yes), provide a measure of PD severity (in a limited fashion, but frequently done poorly), investigate pathophysiology of parkinsonian disorders (yes, if done carefully), play a role in differential diagnosis of parkinsonism (not well), and investigate pathology underlying cognitive impairment (yes, in conjunction with postmortem data). Along the way, we clarify several issues about definitions of biomarkers and surrogate endpoints. The goal of this lecture is to provide a basis for interpreting current literature and newly proposed clinical tools in PD. In the end, one should be able to critically distinguish fact from fantasy.
Collapse
Affiliation(s)
- Joel S. Perlmutter
- Neurology, Washington University, St. Louis, MO, USA
- Radiology, Washington University, St. Louis, MO, USA
- Anatomy & Neurobiology, Washington University, St. Louis, MO, USA
- Occupational Therapy, Washington University, St. Louis, MO, USA
- Physical Therapy, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
7
|
Levodopa induces long-lasting modification in the functional activity of the nigrostriatal pathway. Neurobiol Dis 2013; 62:250-9. [PMID: 24076099 DOI: 10.1016/j.nbd.2013.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022] Open
Abstract
Much controversy exists concerning the effect of levodopa on striatal dopaminergic markers in Parkinson's disease (PD) and its influence on functional neuroimaging. To deal with this issue we studied the impact of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic levodopa administration on striatal (18)F-DOPA uptake (Ki) in an animal model of PD. The levels of several striatal dopaminergic markers and the number of surviving dopaminergic neurons in the substantia nigra (SN) were also assessed. Eleven Macaca fascicularis were included in the study. Eight animals received weekly intravenous injections of MPTP for 7weeks and 3 intact animals served as controls. MPTP-monkeys were divided in two groups. Group I was treated with placebo while Group II received levodopa. Both treatments were maintained for 11months and then followed by a washout period of 6months. (18)F-DOPA positron emission tomography (PET) scans were performed at baseline, after MPTP intoxication, following 11months of treatment, and after a washout period of 1, 3 and 6months. Monkeys were sacrificed 6months after concluding either placebo or levodopa treatment and immediately after the last (18)F-DOPA PET study. Striatal dopamine transporter (DAT) content, tyrosine hydroxylase (TH) content and aromatic l-amino acid decarboxylase (AADC) content were assessed. In Group II (18)F-DOPA PET studies performed at 3 and 6months after interrupting levodopa showed a significantly increased Ki in the anterior putamen as compared to Group I. Levodopa and placebo treated animals exhibited a similar number of surviving dopaminergic cells in the SN. Striatal DAT content was equally reduced in both groups of animals. Animals in Group I exhibited a significant decrease in TH protein content in all the striatal regions assessed. However, in Group II, TH levels were significantly reduced only in the anterior and posterior putamen. Surprisingly, in the levodopa-treated animals the TH levels in the posterior putamen were significantly lower than those in the placebo group. AADC levels in MPTP groups were similar to those of control animals in all striatal areas analyzed. This study shows that chronic levodopa administration to monkeys with partial nigrostriatal degeneration followed by a washout period induces modifications in the functional activity of the dopaminergic nigrostriatal pathway.
Collapse
|
8
|
Aznavour N, Cendres-Bozzi C, Lemoine L, Buda C, Sastre JP, Mincheva Z, Zimmer L, Lin JS. MPTP animal model of Parkinsonism: dopamine cell death or only tyrosine hydroxylase impairment? A study using PET imaging, autoradiography, and immunohistochemistry in the cat. CNS Neurosci Ther 2013; 18:934-41. [PMID: 23106974 DOI: 10.1111/cns.12009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to produce experimental models of Parkinson's disease in laboratory animals. It is believed to cause a selective destruction of substantia nigra dopamine neurons, mainly based on a large reduction of tyrosine hydroxylase (TH), the catecholamine's synthesizing enzyme. Unlike Parkinson's disease in humans, however, all animal models are able to recover more or less rapidly from the MPTP induced Parkinsonian syndrome. This raises the question as whether MPTP causes a cell death with a decrease in dopamine transporter or a simple impairment of TH. METHODS To respond to this question, we quantified in a cat model of Parkinson's disease (MPTP 5 mg/kg i.p. during 5 days) the dopamine transporter using positron emission tomography (PET) imaging and autoradiography of [(11) C]PE2I and compared the data with the TH-immunoreactivity. RESULTS We found no changes in [(11) C]PE2I PET binding either 5 or 26 days after MPTP treatment when compared to baseline levels. Similarly, there were no significant changes in [(11) C]PE2I autoradiographic binding in the cat brain one week after MPTP treatment. In sharp contrast, MPTP treated cats exhibited severe Parkinson-like motor syndrome during the acute period with a marked decrease in TH-immunoreactivity in the striatum. CONCLUSION These data suggest that MPTP toxicity impairs efficiently TH and that such an effect is not necessarily accompanied by significant reduction of dopamine transporter seen with in vitro or in vivo [(11) C]PE2I binding.
Collapse
|
9
|
Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity. Neuropharmacology 2013; 84:159-69. [PMID: 23851258 DOI: 10.1016/j.neuropharm.2013.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 06/06/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022]
Abstract
Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
|
10
|
Ando K, Obayashi S, Nagai Y, Oh-Nishi A, Minamimoto T, Higuchi M, Inoue T, Itoh T, Suhara T. PET analysis of dopaminergic neurodegeneration in relation to immobility in the MPTP-treated common marmoset, a model for Parkinson's disease. PLoS One 2012; 7:e46371. [PMID: 23056291 PMCID: PMC3466292 DOI: 10.1371/journal.pone.0046371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/29/2012] [Indexed: 01/12/2023] Open
Abstract
Background Positron Emission Tomography (PET) measurement was applied to the brain of the common marmoset, a small primate species, treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The marmoset shows prominent Parkinson’s disease (PD) signs due to dopaminergic neural degeneration. Recently, the transgenic marmoset (TG) carrying human PD genes is developing. For phenotypic evaluations of TG, non-invasive PET measurement is considered to be substantially significant. As a reference control for TG, the brain of the MPTP-marmoset as an established and valid model was scanned by PET. Behavioral analysis was also performed by recording locomotion of the MPTP-marmoset, as an objective measure of PD signs. Methodology/Principal Findings Marmosets received several MPTP regimens (single MPTP regimen: 2 mg/kg, s.c., per day for 3 consecutive days) were used for PET measurement and behavioral observation. To measure immobility as a central PD sign, locomotion of marmosets in their individual living cages were recorded daily by infrared sensors. Daily locomotion counts decreased drastically after MPTP regimens and remained diminished for several months or more. PET scan of the brain, using [11C]PE2I as a ligand of the dopamine (DA) transporter, was performed once several months after the last MPTP regimen. The mean binding potential (BPND) in the striatum (putamen and caudate) of the MPTP-marmoset group was significantly lower than that of the MPTP-free control group (n = 5 for each group). In the MPTP-marmosets, the decrease of BPND in the striatum closely correlated with the decrease in locomotion counts (r = 0.98 in putamen and 0.91 in caudate). Conclusion/Significance The present characterization of neural degeneration using non-invasive PET imaging and of behavioral manifestation in the MPTP marmoset mimics typical PD characteristics and can be useful in evaluating the phenotype of TG marmosets being developed.
Collapse
Affiliation(s)
- Kiyoshi Ando
- Central Institute for Experimental Animals, Kawasakiku, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pattarini R, Rong Y, Shepherd KR, Jiao Y, Qu C, Smeyne RJ, Morgan JI. Long-lasting transcriptional refractoriness triggered by a single exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine. Neuroscience 2012; 214:84-105. [PMID: 22542874 DOI: 10.1016/j.neuroscience.2012.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is thought to have environmental (toxin) and genetic contributions. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) induces pathological features of PD including loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and striatal dopamine (DA) depletion. We previously described the striatal transcriptional response following acute MPTP administration in MPTP-sensitive C57BL/6J mice. We identified three distinct phases: early (5h), intermediate (24h) and late (72h) and reported that the intermediate and late responses were absent in MPTP-resistant Swiss-Webster (SWR) mice. Here we show that C57BL/6J mice pre-treated with a single 40 mg/kg dose of MPTP and treated 9 days later with 4×20 mg/kg MPTP, display a striatal transcriptional response similar to that of MPTP-resistant SWR mice, i.e. a robust acute response but no intermediate or late response. Transcriptional refractoriness is dependent upon the dose of the priming challenge with as little as 10mg/kg MPTP being effective and can persist for more than 28 days. Priming of SWR mice has no effect on their response to subsequent challenge with MPTP. We also report that paraquat, another free radical producer, also elicits striatal transcriptional alterations but these are largely distinct from those triggered by MPTP. Paraquat-induced changes are also refractory to priming with paraquat. However neither paraquat nor MPTP elicits cross-attenuation. Thus exposure to specific toxins triggers distinct transcriptional responses in striatum that are influenced by prior exposure to the same toxin. The prolonged refractory period described here for MPTP could explain at the molecular level the reported discrepancies between different MPTP administration regimens and may have implications for our understanding of the relationship between environmental toxin exposure and PD.
Collapse
Affiliation(s)
- R Pattarini
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Nagai Y, Minamimoto T, Ando K, Obayashi S, Ito H, Ito N, Suhara T. Correlation between decreased motor activity and dopaminergic degeneration in the ventrolateral putamen in monkeys receiving repeated MPTP administrations: a positron emission tomography study. Neurosci Res 2012; 73:61-7. [PMID: 22374309 DOI: 10.1016/j.neures.2012.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) patients have remarkably reduced levels of dopaminergic biomarkers in the caudal putamen. However, the relationship between motor impairments and the localization of intrastriatal dopaminergic degeneration in monkey PD models remains unclear. To identify the striatal areas with dopaminergic dysfunction responsible for motor impairments, we measured changes in both general motor activity and in vivo dopaminergic biomarkers in three cynomolgus monkeys that repeatedly received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), starting in the normal state and continuing until after tremor appearance. Binding of dopamine transporters (DAT) and D(2) receptors were measured by positron emission tomography (PET) using [(11)C]PE2I and [(11)C]raclopride, respectively. Region-of-interest-based regression analysis demonstrated the degree of general motor activity reduction to be explained by striatal DAT binding but not by D(2) receptor binding. Furthermore, voxel-based analysis revealed a significant correlation between reduced general motor activity and decreased DAT binding, specifically in the ventrolateral putamen, which corresponds to the area receiving upper body motor inputs from the primary motor cortex. These results suggest that specific functional deficits in PD models are closely related to the degeneration of dopaminergic terminals in the striatal subregion responsible for these functions and that the level of deficit is dependent on the degree of degeneration.
Collapse
Affiliation(s)
- Yuji Nagai
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Landau AM, Clark C, Jivan S, Doudet DJ. Antiparkinsonian Mechanism of Electroconvulsive Therapy in MPTP-Lesioned Non-Human Primates. NEURODEGENER DIS 2012; 9:128-38. [DOI: 10.1159/000334497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
|
14
|
Pavese N. Do we still need to develop new imaging biomarkers of dopamine denervation for Parkinson's disease? Exp Neurol 2011; 233:118-20. [PMID: 22036688 DOI: 10.1016/j.expneurol.2011.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/11/2011] [Indexed: 11/16/2022]
|
15
|
Masilamoni G, Votaw J, Howell L, Villalba RM, Goodman M, Voll RJ, Stehouwer J, Wichmann T, Smith Y. (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp Neurol 2010; 226:265-73. [PMID: 20832405 DOI: 10.1016/j.expneurol.2010.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/12/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
Abstract
The positron emission tomography (PET) tracer 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)-nortropane ((18)F-FECNT) is a highly specific ligand for dopamine transporter (DAT) that yields higher peak striatum-to-cerebellum ratios and offers more favorable kinetics than most (18)F-radiolabeled DAT ligands currently available. The goal of this study is to validate the use of (18)F-FECNT as a PET radiotracer to assess the degree of striatal dopamine terminals denervation and midbrain dopaminergic cell loss in MPTP-treated parkinsonian monkeys. Three rhesus monkeys received weekly injections of MPTP (0.2-0.5 mg/kg) for 21 weeks, which resulted in the progressive development of a moderate level of parkinsonism. We carried out (18)F-FECNT PET at baseline (twice; 10 weeks apart) and at week 21 post-MPTP injections. Postmortem stereological cell counts of dopaminergic neurons in the ventral midbrain, and intensity measurements of DAT and tyrosine hydroxylase (TH) immunoreactivity in the striatum were performed and correlated with striatal and ventral midbrain PET data. Three additional monkeys were used as controls for midbrain dopaminergic cell counts, and striatal DAT or TH immunoreactivity measurements. The correlation and coefficient of variance between (18)F-FECNT test-retest specific uptake ratios were 0.99 (R²) and 2.65%, respectively. The (18)F-FECNT binding potential of the ventral midbrain and striatal regions was tightly correlated with postmortem stereological cell counts of nigral dopaminergic neurons (R²=0.91), and striatal DAT (R²=0.83) or TH (R²=0.88) immunoreactivity intensity measurements. These findings demonstrate that (18)F-FECNT is a highly sensitive PET imaging ligand to quantify both striatal dopamine denervation and midbrain dopaminergic cell loss associated with parkinsonism.
Collapse
Affiliation(s)
- Gunasingh Masilamoni
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mach RH, Schwarz SW. Challenges for Developing PET Tracers: Isotopes, Chemistry, and Regulatory Aspects. PET Clin 2010; 5:131-53. [DOI: 10.1016/j.cpet.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. PROGRESS IN BRAIN RESEARCH 2010; 184:133-57. [DOI: 10.1016/s0079-6123(10)84007-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Obayashi S, Nagai Y, Suhara T, Okauchi T, Inaji M, Iriki A, Maeda J. Monkey brain activity modulated by reward preferences: A positron emission tomography study. Neurosci Res 2009; 64:421-8. [DOI: 10.1016/j.neures.2009.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/29/2022]
|
19
|
Collantes M, Prieto E, Peñuelas I, Blesa J, Juri C, Martí-Climent JM, Quincoces G, Arbizu J, Riverol M, Zubieta JL, Rodriguez-Oroz MC, Luquin MR, Richter JA, Obeso JA. New MRI, 18F-DOPA and 11C-(+)-alpha-dihydrotetrabenazine templates for Macaca fascicularis neuroimaging: advantages to improve PET quantification. Neuroimage 2009; 47:533-9. [PMID: 19422919 DOI: 10.1016/j.neuroimage.2009.04.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/18/2009] [Accepted: 04/23/2009] [Indexed: 11/28/2022] Open
Abstract
Normalization of neuroimaging studies to a stereotaxic space allows the utilization of standard volumes of interest (VOIs) and voxel-based analysis (SPM). Such spatial normalization of PET and MRI studies requires a high quality template image. The aim of this study was to create new MRI and PET templates of (18)F-DOPA and (11)C-(+)-alpha-dihydrotetrabenazine ((11)C-DTBZ) of the Macaca fascicularis brain, an important animal model of Parkinson's disease. MRI template was constructed as a smoothed average of the scans of 15 healthy animals, previously transformed into the space of one representative MRI. In order to create the PET templates, (18)F-DOPA and (11)C-DTBZ PET of the same subjects were acquired in a dedicated small animal PET scanner and transformed to the created MRI template space. To validate these templates for PET quantification, parametric values obtained with a standard VOI-map applied after spatial normalization to each template were statistically compared to results computed using individual VOIs drawn for each animal. The high correlation between both procedures validated the utilization of all the templates, improving the reproducibility of PET analysis. To prove the utility of the templates for voxel-based quantification, dopamine striatal depletion in a representative monkey treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was assessed by SPM analysis of (11)C-DTBZ PET. A symmetric reduction in striatal (11)C-DTBZ uptake was detected in accordance with the induced lesion. In conclusion, templates of M. fascicularis brain have been constructed and validated for reproducible and automated PET quantification. All templates are electronically available via the internet.
Collapse
Affiliation(s)
- M Collantes
- Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ando K, Maeda J, Inaji M, Okauchi T, Obayashi S, Higuchi M, Suhara T, Tanioka Y. Neurobehavioral protection by single dose l-deprenyl against MPTP-induced parkinsonism in common marmosets. Psychopharmacology (Berl) 2008; 195:509-16. [PMID: 17879087 DOI: 10.1007/s00213-007-0929-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 08/15/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Establishment of preclinical method evaluating behavioral protective actions of drugs for Parkinson's disease was attempted using l-deprenyl (DEP) as a reference drug in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated common marmosets. MATERIALS AND METHODS Fifteen marmosets received MPTP at 2 mg/kg, subcutaneously (s.c.) per day for three consecutive days. To these marmosets, intragastric (i.g.) administration of DEP at 10 mg/kg was pretreated 2 h before each MPTP administration in DEP3 group and pretreated only in the first MPTP administration day in DEP1 group. As a control, distilled water (DW) was pretreated before each MPTP administration (n = 5 for each of three groups). RESULTS In DW group, decreased daily activity counts and increased dysfunction scores were persistently observed for 3 weeks after MPTP. In DEP groups, the similar changes of both levels to those in DW group were temporally observed after MPTP for several days and then the values recovered to the pre-MPTP levels. The results of autoradiography performed after above behavioral observations indicated that markedly lower bindings of [(11)C]PE2I (ligand for dopamine transporters) were observed at the striatum of DW group marmoset as compared with the striatum of additionally prepared MPTP-free marmoset (n = 5). The bindings in DEP groups were almost the same as in the MPTP-free marmoset brains. CONCLUSION The present preclinical methods using continuous recording of activity of marmosets in their living cages and autoradiography using dopamine transporter ligand might be sensitive for detecting protective actions of drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Kiyoshi Ando
- Department of Marmoset Research, Central Institute for Experimental Animals, 1430 Nogawa, Miyamaeku, Kawasaki 216-0001, Japan.
| | | | | | | | | | | | | | | |
Collapse
|