1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Jahreis K, Brüge A, Borsdorf S, Müller FE, Sun W, Jia S, Kang DM, Boesen N, Shin S, Lim S, Koroleva A, Satała G, Bojarski AJ, Rakuša E, Fink A, Doblhammer-Reiter G, Kim YK, Dityatev A, Ponimaskin E, Labus J. Amisulpride as a potential disease-modifying drug in the treatment of tauopathies. Alzheimers Dement 2023; 19:5482-5497. [PMID: 37218673 DOI: 10.1002/alz.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Hyperphosphorylation and aggregation of the microtubule-associated protein tau cause the development of tauopathies, such as Alzheimer's disease and frontotemporal dementia (FTD). We recently uncovered a causal link between constitutive serotonin receptor 7 (5-HT7R) activity and pathological tau aggregation. Here, we evaluated 5-HT7R inverse agonists as novel drugs in the treatment of tauopathies. METHODS Based on structural homology, we screened multiple approved drugs for their inverse agonism toward 5-HT7R. Therapeutic potential was validated using biochemical, pharmacological, microscopic, and behavioral approaches in different cellular models including tau aggregation cell line HEK293 tau bimolecular fluorescence complementation, primary mouse neurons, and human induced pluripotent stem cell-derived neurons carrying an FTD-associated tau mutation as well as in two mouse models of tauopathy. RESULTS Antipsychotic drug amisulpride is a potent 5-HT7R inverse agonist. Amisulpride ameliorated tau hyperphosphorylation and aggregation in vitro. It further reduced tau pathology and abrogated memory impairment in mice. DISCUSSION Amisulpride may be a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Kathrin Jahreis
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Alina Brüge
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Saskia Borsdorf
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Franziska E Müller
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dong Min Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Nicolette Boesen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungsu Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Anastasia Koroleva
- Department of Nanoengineering, Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Elena Rakuša
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Josephine Labus
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Zang J, Liu Y, Li W, Xiao D, Zhang Y, Luo Y, Liang W, Liu F, Wei W. Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice. Neuroscience 2017; 354:122-135. [PMID: 28456716 DOI: 10.1016/j.neuroscience.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the β subunit of Glycogen synthase kinase-3 (GSK3β) can be significantly regulated by exercise, and the modulation of GSK3β activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3β plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3β, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3β, after exercise. The activity of the insulin pathway, which negatively regulates GSK3β, was also increased. Moreover, our results showed that the dopamine D1 receptor (DARP D1) pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3β and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3β expression and activity, which may be implemented through the DARP D1 receptor-signaling pathway.
Collapse
Affiliation(s)
- Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Di Xiao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Yingcheng Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yuxiang Luo
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Wanying Liang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Fei Liu
- Department of Neurochemistry, Inge-Grundke Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
4
|
Smythies J. Off the beaten track: the molecular structure of long-term memory: three novel hypotheses-electrical, chemical and anatomical (allosteric). Front Integr Neurosci 2015; 9:4. [PMID: 25688189 PMCID: PMC4310284 DOI: 10.3389/fnint.2015.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 02/04/2023] Open
Affiliation(s)
- John Smythies
- Department of Psychiatry, Center for Brain and Cognition, University of California San Diego La Jolla, CA, USA ; Department of Psychiatry, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
5
|
Nykänen NP, Kysenius K, Sakha P, Tammela P, Huttunen HJ. γ-Aminobutyric acid type A (GABAA) receptor activation modulates tau phosphorylation. J Biol Chem 2012; 287:6743-52. [PMID: 22235112 DOI: 10.1074/jbc.m111.309385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3β kinase activity.
Collapse
Affiliation(s)
- Niko-Petteri Nykänen
- Neuroscience Center, Faculty of Pharmacy, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | |
Collapse
|
6
|
McLinden KA, Trunova S, Giniger E. At the Fulcrum in Health and Disease: Cdk5 and the Balancing Acts of Neuronal Structure and Physiology. ACTA ACUST UNITED AC 2012; 2012:001. [PMID: 25364642 PMCID: PMC4212508 DOI: 10.4172/2168-975x.s1-001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cdk5 has been implicated in a multitude of processes in neuronal development, cell biology and physiology. These influence many neurological disorders, but the very breadth of Cdk5 effects has made it difficult to synthesize a coherent picture of the part played by this protein in health and disease. In this review, we focus on the roles of Cdk5 in neuronal function, particularly synaptic homeostasis, plasticity, neurotransmission, subcellular organization, and trafficking. We then discuss how disruption of these Cdk5 activities may initiate or exacerbate neural disorders. A recurring theme will be the sensitivity of Cdk5 sequelae to the precise biological context under consideration.
Collapse
Affiliation(s)
- Kristina A McLinden
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Svetlana Trunova
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| |
Collapse
|
7
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1851] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|