1
|
Matarrita-Carranza B, Murillo-Cruz C, Avendaño R, Ríos MI, Chavarría M, Gómez-Calvo ML, Tamayo-Castillo G, Araya JJ, Pinto-Tomás AA. Streptomyces sp. M54: an actinobacteria associated with a neotropical social wasp with high potential for antibiotic production. Antonie van Leeuwenhoek 2021; 114:379-398. [PMID: 33587228 DOI: 10.1007/s10482-021-01520-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
Streptomyces symbionts in insects have shown to be a valuable source of new antibiotics. Here, we report the genome sequence and the potential for antibiotic production of "Streptomyces sp. M54", an Actinobacteria associated with the eusocial wasp, Polybia plebeja. The Streptomyces sp. M54 genome is composed of a chromosome (7.96 Mb), and a plasmid (1.91 Kb) and harbors 30 biosynthetic gene clusters for secondary metabolites, of which only one third has been previously characterized. Growth inhibition bioassays show that this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans. Analyses through TLC-bioautography, LC-MS/MS and NMR allowed the identification of five macrocyclic ionophore antibiotics, with previously reported antibacterial, antitumor and antiviral properties. Phylogenetic analyses placed Streptomyces sp. M54 in a clade of other host-associated strains taxonomically related to Streptomyces griseus. Pangenomic and ANI analyses confirm the identity of one of its closest relatives as Streptomyces sp. LaPpAH-199, a strain isolated from an ant-plant symbiosis in Africa. In summary, our results suggest an insect-microbe association in distant geographic areas and showcase the potential of Streptomyces sp. M54 and related strains for the discovery of novel antibiotics.
Collapse
Affiliation(s)
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - María Isabel Ríos
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - María Luisa Gómez-Calvo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Juan J Araya
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, 11501-2060, San José, Costa Rica. .,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, 11501-2060, San José, Costa Rica. .,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.
| |
Collapse
|
2
|
Draft Genome Sequence of Streptomyces cavourensis YBQ59, an Endophytic Producer of Antibiotics Bafilomycin D, Nonactic Acid, Prelactone B, and 5,11-Epoxy-10-Cadinanol. Microbiol Resour Announc 2018; 7:MRA01056-18. [PMID: 30533639 PMCID: PMC6256662 DOI: 10.1128/mra.01056-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
This study reports the draft genome sequence of the endophytic Streptomyces cavourensis strain YBQ59, produces the antibiotics bafilomycin D, nonactic acid, prelactone B, and 5,11-epoxy-10-cadinanol. The draft genome sequence comprises ∼10.2 Mb, with a GC content of 64% and 8,958 predicted protein-coding genes, of which 14 gene clusters were found to associate with antibiotic biosynthetic pathways.
Collapse
|
3
|
A novel pH–precursor–glucose synergic control strategy for dinactin biosynthesis by an arctic actinomycete Streptomyces sp. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Selvin J, Sathiyanarayanan G, Lipton AN, Al-Dhabi NA, Valan Arasu M, Kiran GS. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents. Front Microbiol 2016; 7:63. [PMID: 26903957 PMCID: PMC4751271 DOI: 10.3389/fmicb.2016.00063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.
Collapse
Affiliation(s)
- Joseph Selvin
- Department of Microbiology, Pondicherry UniversityKalapet, India; Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | | | - Anuj N Lipton
- Department of Microbiology, Pondicherry UniversityKalapet, India; Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Sciences, King Saud University Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Sciences, King Saud University Riyadh, Saudi Arabia
| | - George S Kiran
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia; Department of Food Science and Technology, Pondicherry UniversityKalapet, India
| |
Collapse
|
6
|
Kim HJ, Karki S, Kwon SY, Park SH, Nahm BH, Kim YK, Kwon HJ. A single module type I polyketide synthase directs de novo macrolactone biogenesis during galbonolide biosynthesis in Streptomyces galbus. J Biol Chem 2014; 289:34557-68. [PMID: 25336658 DOI: 10.1074/jbc.m114.602334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-(13)C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- From the Department of Biological Science, Myongji University, Yongin 449-728
| | - Suman Karki
- From the Department of Biological Science, Myongji University, Yongin 449-728
| | - So-Yeon Kwon
- From the Department of Biological Science, Myongji University, Yongin 449-728
| | - Si-Hyung Park
- the Department of Oriental Medicine Resources, Mokpo National University, Muan 534-729, and
| | - Baek-Hie Nahm
- From the Department of Biological Science, Myongji University, Yongin 449-728, GreenGene BioTech Inc., Yongin 449-728, Republic of Korea
| | - Yeon-Ki Kim
- GreenGene BioTech Inc., Yongin 449-728, Republic of Korea
| | - Hyung-Jin Kwon
- From the Department of Biological Science, Myongji University, Yongin 449-728,
| |
Collapse
|
7
|
|
8
|
Chopra T, Banerjee S, Gupta S, Yadav G, Anand S, Surolia A, Roy RP, Mohanty D, Gokhale RS. Novel intermolecular iterative mechanism for biosynthesis of mycoketide catalyzed by a bimodular polyketide synthase. PLoS Biol 2008; 6:e163. [PMID: 18613748 PMCID: PMC2443190 DOI: 10.1371/journal.pbio.0060163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 05/27/2008] [Indexed: 11/18/2022] Open
Abstract
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-β-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel “modularly iterative” mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery. Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Mycobacterium tuberculosis (Mtb) exploits these polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its virulence. PKSs utilize two common mechanistic themes to produce these metabolites: (1) modular—in which each set of catalytic sites is used only once during the entire biosynthetic process and (2) iterative—in which the same set of active sites is used repeatedly. Our study with PKS12 protein from Mtb (the largest protein in this genome) reveals a third mechanism for polyketide biosynthesis. In this hybrid “modularly iterative” mechanism, PKS12 protein forms a supramolecular assembly to perform repetitive cycles of iterations. The protein assembly is formed by specific intermolecular interactions between N- and C-terminus linkers, analogous to modular PKSs. Our study adds a new dimension to the existing catalytic and mechanistic versatility of PKSs, providing a new perspective on how metabolic diversity could be generated by different combinations of existing functional scaffolds. A novel iterative biosynthetic mechanism for multifunctional polyketide synthases reveals how the metabolic diversity of this enzyme family can arise by using existing scaffolds in novel combinations.
Collapse
Affiliation(s)
- Tarun Chopra
- National Institute of Immunology, New Delhi, India
| | | | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | | | - Swadha Anand
- National Institute of Immunology, New Delhi, India
| | | | | | | | - Rajesh S Gokhale
- National Institute of Immunology, New Delhi, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Jani P, Emmert J, Wohlgemuth R. Process analysis of macrotetrolide biosynthesis during fermentation by means of direct infusion LC-MS. Biotechnol J 2008; 3:202-8. [DOI: 10.1002/biot.200700174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Hill AM. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat Prod Rep 2005; 23:256-320. [PMID: 16572230 DOI: 10.1039/b301028g] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review covers the biosynthesis of aliphatic and aromatic polyketides as well as mixed polyketide/NRPS metabolites, and discusses the molecular genetics and enzymology of the proteins responsible for their formation.
Collapse
|
11
|
Du L, Cheng YQ, Ingenhorst G, Tang GL, Huang Y, Shen B. Hybrid peptide-polyketide natural products: biosynthesis and prospects towards engineering novel molecules. GENETIC ENGINEERING 2004; 25:227-67. [PMID: 15260241 DOI: 10.1007/978-1-4615-0073-5_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.
Collapse
|