1
|
Abstract
Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.
Collapse
|
2
|
Shimoyama A, Fukase K. Lipid A-Mediated Bacterial-Host Chemical Ecology: Synthetic Research of Bacterial Lipid As and Their Development as Adjuvants. Molecules 2021; 26:molecules26206294. [PMID: 34684874 PMCID: PMC8538916 DOI: 10.3390/molecules26206294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial-host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (A.S.); (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (A.S.); (K.F.)
| |
Collapse
|
3
|
Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K. Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew Chem Int Ed Engl 2021; 60:10023-10031. [PMID: 33522128 PMCID: PMC8252424 DOI: 10.1002/anie.202012374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Haruki Yamaura
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Keisuke Mizote
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Angelo Palmigiano
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Molly D. Pither
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Immacolata Speciale
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Tomoya Uto
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Seiji Masui
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Luisa Sturiale
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Domenico Garozzo
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Koji Hosomi
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental SystemNational Institutes of Biomedical Innovation, Health and NutritionOsaka567-0085Japan
| | - Naoko Shibata
- Faculty of Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Kazuya Kabayama
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Yukari Fujimoto
- Faculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohamaKanagawa223-8522Japan
| | - Alba Silipo
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Jun Kunisawa
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental SystemNational Institutes of Biomedical Innovation, Health and NutritionOsaka567-0085Japan
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of Tokyo4–6-1 Shirokanedai, Minato-kuTokyo108-8639Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of Tokyo4–6-1 Shirokanedai, Minato-kuTokyo108-8639Japan
| | - Antonio Molinaro
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Koichi Fukase
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| |
Collapse
|
4
|
Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K. Lipopolysaccharide from Gut‐Associated Lymphoid‐Tissue‐Resident
Alcaligenes faecalis
: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Haruki Yamaura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keisuke Mizote
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Angelo Palmigiano
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Molly D. Pither
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Immacolata Speciale
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Tomoya Uto
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Seiji Masui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Luisa Sturiale
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Domenico Garozzo
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Koji Hosomi
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Naoko Shibata
- Faculty of Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Alba Silipo
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Jun Kunisawa
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science The University of Tokyo 4–6-1 Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science The University of Tokyo 4–6-1 Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Antonio Molinaro
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
5
|
Heine H, Adanitsch F, Peternelj TT, Haegman M, Kasper C, Ittig S, Beyaert R, Jerala R, Zamyatina A. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Front Immunol 2021; 12:631797. [PMID: 33815382 PMCID: PMC8012497 DOI: 10.3389/fimmu.2021.631797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer. The TLR4/MD-2 complex can recognize the terminal motif of Gram-negative bacterial lipopolysaccharide (LPS)—a glycophospholipid lipid A. Although immense progress in understanding the molecular basis of LPS-induced TLR4-mediated signaling has been achieved, gradual, and predictable TLR4 activation by structurally defined ligands has not yet been attained. We report on controllable modulation of cellular pro-inflammatory responses by application of novel synthetic glycolipids—disaccharide-based lipid A mimetics (DLAMs) having picomolar affinity for TLR4/MD-2. Using crystal structure inspired design we have developed endotoxin mimetics where the inherently flexible β(1 → 6)-linked diglucosamine backbone of lipid A is replaced by a conformationally restricted α,α-(1↔1)-linked disaccharide scaffold. The tertiary structure of the disaccharide skeleton of DLAMs mirrors the 3-dimensional shape of TLR4/MD-2 bound E. coli lipid A. Due to exceptional conformational rigidity of the sugar scaffold, the specific 3D organization of DLAM must be preserved upon interaction with proteins. These structural factors along with specific acylation and phosphorylation pattern can ensure picomolar affinity for TLR4 and permit efficient dimerization of TLR4/MD-2/DLAM complexes. Since the binding pose of lipid A in the binding pocket of MD-2 (±180°) is crucial for the expression of biological activity, the chemical structure of DLAMs was designed to permit a predefined binding orientation in the binding groove of MD-2, which ensured tailored and species-independent (human and mice) TLR4 activation. Manipulating phosphorylation and acylation pattern at the sugar moiety facing the secondary dimerization interface allowed for adjustable modulation of the TLR4-mediated signaling. Tailored modulation of cellular pro-inflammatory responses by distinct modifications of the molecular structure of DLAMs was attained in primary human and mouse immune cells, lung epithelial cells and TLR4 transfected HEK293 cells.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tina Tinkara Peternelj
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Simon Ittig
- Biozentrum University of Basel, Basel, Switzerland
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Manabe Y, Chang TC, Fukase K. Recent advances in self-adjuvanting glycoconjugate vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:61-71. [PMID: 34895656 DOI: 10.1016/j.ddtec.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Compared to traditional vaccines that are formulated into mixtures of an adjuvant and an antigen, a self-adjuvanting vaccine consists of an antigen that is covalently conjugated to a well-defined adjuvant. In self-adjuvanting vaccines, innate immune receptor ligands are usually used as adjuvants. Innate immune receptor ligands effectively trigger acquired immunity through the activation of innate immunity to enhance host immune responses to antigens. When a self-adjuvanting vaccine is used, immune cells simultaneously uptake the antigen and the adjuvant because they are covalently linked. Consequently, the adjuvant can specifically induce immune responses against the conjugated antigen. Importantly, self-adjuvanting vaccines do not require co-administration of additional adjuvants or immobilization to carrier proteins, which enables avoidance of the use of highly toxic adjuvants or the induction of undesired immune responses. Given these excellent properties, self-adjuvanting vaccines are expected to serve as candidates for the next generation of vaccines. Herein, we review vaccine adjuvants, with a focus on the adjuvants used in self-adjuvanting vaccines, and then overview recent advances made with self-adjuvanting conjugate vaccines.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
7
|
Aiga T, Manabe Y, Ito K, Chang T, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Aiga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Tsung‐Che Chang
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Ayane Miura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
8
|
Aiga T, Manabe Y, Ito K, Chang TC, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co-Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020; 59:17705-17711. [PMID: 32583549 DOI: 10.1002/anie.202007999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3 CSK4 , α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.
Collapse
Affiliation(s)
- Taku Aiga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shino Ohshima
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshie Kametani
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
9
|
Li Y, Mao Y, Yu N, Xu X, Li M, Jiang Z, Wu C, Xu K, Chang K, Wang S, Mao H, Hu C. Grass carp (Ctenopharyngodon idellus) TRAF6 up-regulates IFN1 expression by activating IRF5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103475. [PMID: 31437525 DOI: 10.1016/j.dci.2019.103475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
In mammals, interferon regulatory factor 5 (IRF5) can be activated by tumor necrosis factor receptor-associated factor 6 (TRAF6). Upon activation, IRF5 translocates into the nucleus, where it binds to IFN promoter and up-regulates IFN expression. However, there are few reports on the molecular mechanism by which TRAF6 up-regulates IFN expression in fish. In this study, we explored how Grass carp (Ctenopharyngodon idellus) TRAF6 initiated innate immunity by activating IRF5. We found that CiTRAF6, CiIRF5 and CiIFN1 were all significantly up-regulated in LPS-stimulated CIK cells and the expression of CiTRAF6 was earlier than the expressions of CiIRF5 and CiIFN1. These findings suggested that CiIFN1 expression might be induced by CiTRAF6 in fish. CiIFN1 expression, CiIFN1 promoter activity and CO cells viability were all significantly up-regulated in the overexpression experiments, but they were significantly down-regulated in the gene silencing experiments. This indicated that CiTRAF6, along with CiIRF5, regulated CiIFN1 expression. The localization analysis found that both CiTRAF6 and CiIRF5 located in the cytoplasm. Following LPS stimulation, CiIRF5 was observed to translocate to the nucleus. GST-pull down and co-IP experiments revealed that CiTRAF6 interacted with CiIRF5. The colocalization analysis also showed that CiTRAF6 bound with CiIRF5 in the cytoplasm. Overexpression of CiTRAF6 increased the endogenous CiIRF5, promoted its ubiquitination and nuclear translocation. In conclusion, CiTRAF6 bound to CiIRF5 in the cytoplasm, and then activated CiIRF5, resulting in up-regulating the expression of CiIFN1.
Collapse
Affiliation(s)
- Yinping Li
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Yuexin Mao
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Ningli Yu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Kang Xu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
11
|
Zamyatina A. Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein J Org Chem 2018; 14:25-53. [PMID: 29379577 PMCID: PMC5769089 DOI: 10.3762/bjoc.14.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
The immediate immune response to infection by Gram-negative bacteria depends on the structure of a lipopolysaccharide (LPS, also known as endotoxin), a complex glycolipid constituting the outer leaflet of the bacterial outer membrane. Recognition of picomolar quantities of pathogenic LPS by the germ-line encoded Toll-like Receptor 4 (TLR4) complex triggers the intracellular pro-inflammatory signaling cascade leading to the expression of cytokines, chemokines, prostaglandins and reactive oxygen species which manifest an acute inflammatory response to infection. The "endotoxic principle" of LPS resides in its amphiphilic membrane-bound fragment glycophospholipid lipid A which directly binds to the TLR4·MD-2 receptor complex. The lipid A content of LPS comprises a complex mixture of structural homologs varying in the acylation pattern, the length of the (R)-3-hydroxyacyl- and (R)-3-acyloxyacyl long-chain residues and in the phosphorylation status of the β(1→6)-linked diglucosamine backbone. The structural heterogeneity of the lipid A isolates obtained from bacterial cultures as well as possible contamination with other pro-inflammatory bacterial components makes it difficult to obtain unambiguous immunobiological data correlating specific structural features of lipid A with its endotoxic activity. Advanced understanding of the therapeutic significance of the TLR4-mediated modulation of the innate immune signaling and the central role of lipid A in the recognition of LPS by the innate immune system has led to a demand for well-defined materials for biological studies. Since effective synthetic chemistry is a prerequisite for the availability of homogeneous structurally distinct lipid A, the development of divergent and reproducible approaches for the synthesis of various types of lipid A has become a subject of considerable importance. This review focuses on recent advances in synthetic methodologies toward LPS substructures comprising lipid A and describes the synthesis and immunobiological properties of representative lipid A variants corresponding to different bacterial species. The main criteria for the choice of orthogonal protecting groups for hydroxyl and amino functions of synthetically assembled β(1→6)-linked diglucosamine backbone of lipid A which allows for a stepwise introduction of multiple functional groups into the molecule are discussed. Thorough consideration is also given to the synthesis of 1,1'-glycosyl phosphodiesters comprising partial structures of 4-amino-4-deoxy-β-L-arabinose modified Burkholderia lipid A and galactosamine-modified Francisella lipid A. Particular emphasis is put on the stereoselective construction of binary glycosyl phosphodiester fragments connecting the anomeric centers of two aminosugars as well as on the advanced P(III)-phosphorus chemistry behind the assembly of zwitterionic double glycosyl phosphodiesters.
Collapse
Affiliation(s)
- Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
12
|
Giguère D. Surface polysaccharides from Acinetobacter baumannii : Structures and syntheses. Carbohydr Res 2015; 418:29-43. [DOI: 10.1016/j.carres.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/31/2022]
|
13
|
Hollaus R, Ittig S, Hofinger A, Haegman M, Beyaert R, Kosma P, Zamyatina A. Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential. Chemistry 2015; 21:4102-14. [PMID: 25630448 PMCID: PMC4517147 DOI: 10.1002/chem.201406058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram-negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4-amino-4-deoxy-β-l-arabinose (β-l-Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro-inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β-l-Ara4N at the anomeric phosphate and its Ara4N-free counterpart. The double glycosyl phosphodiester was assembled by triazolyl-tris-(pyrrolidinyl)phosphonium-assisted coupling of the β-l-Ara4N H-phosphonate to α-lactol of β(1→6) diglucosamine, pentaacylated with (R)-(3)-acyloxyacyl- and Alloc-protected (R)-(3)-hydroxyacyl residues. The intermediate 1,1′-glycosyl-H-phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β-l-Ara4N-substituted Burkholderia Lipid A. The β-l-Ara4N modification significantly enhanced the pro-inflammatory innate immune signaling of otherwise non-endotoxic Burkholderia Lipid A.
Collapse
Affiliation(s)
- Ralph Hollaus
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria)
| | | | | | | | | | | | | |
Collapse
|
14
|
Khalaf JK, Bowen WS, Bazin HG, Ryter KT, Livesay MT, Ward JR, Evans JT, Johnson DA. Characterization of TRIF selectivity in the AGP class of lipid A mimetics: role of secondary lipid chains. Bioorg Med Chem Lett 2014; 25:547-53. [PMID: 25553892 DOI: 10.1016/j.bmcl.2014.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
TLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and d-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay. An (R)-3-decanoyloxytetradecanoyl group on the 3-position of the d-glucosamine unit was found to be indispensable for maintaining low NF-κB activity irrespective of the substitutions (decyl or decanoyl) on the other two secondary positions. These results suggest that the carbonyl group of the 3-secondary lipid chain may impede homodimerization and/or conformational changes in the TLR4-MD2 complex necessary for MyD88 binding and pro-inflammatory cytokine induction.
Collapse
Affiliation(s)
- Juhienah K Khalaf
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - William S Bowen
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Donald E. Baxter Biomedical Research Building, 570 South Preston Street, Louisville, KY 40202, USA
| | - Hélène G Bazin
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - Kendal T Ryter
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - Mark T Livesay
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - Jon R Ward
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - Jay T Evans
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | - David A Johnson
- GlaxoSmithKline Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA.
| |
Collapse
|
15
|
Adanitsch F, Ittig S, Stöckl J, Oblak A, Haegman M, Jerala R, Beyaert R, Kosma P, Zamyatina A. Development of αGlcN(1↔1)αMan-based lipid A mimetics as a novel class of potent Toll-like receptor 4 agonists. J Med Chem 2014; 57:8056-71. [PMID: 25252784 PMCID: PMC4191062 DOI: 10.1021/jm500946r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The endotoxic portion of lipopolysaccharide
(LPS), a glycophospholipid
Lipid A, initiates the activation of the Toll-like Receptor 4 (TLR4)–myeloid
differentiation factor 2 (MD-2) complex, which results in pro-inflammatory
immune signaling. To unveil the structural requirements for TLR4·MD-2-specific
ligands, we have developed conformationally restricted Lipid A mimetics
wherein the flexible βGlcN(1→6)GlcN backbone of Lipid
A is exchanged for a rigid trehalose-like αGlcN(1↔1)αMan scaffold
resembling the molecular shape of TLR4·MD-2-bound E.
coli Lipid A disclosed in the X-ray structure. A convergent
synthetic route toward orthogonally protected αGlcN(1↔1)αMan
disaccharide has been elaborated. The α,α-(1↔1)
linkage was attained by the glycosylation of 2-N-carbamate-protected
α-GlcN-lactol with N-phenyl-trifluoroacetimidate
of 2-O-methylated mannose. Regioselective acylation
with (R)-3-acyloxyacyl fatty acids and successive
phosphorylation followed by global deprotection afforded bis- and
monophosphorylated hexaacylated Lipid A mimetics. αGlcN(1↔1)αMan-based
Lipid A mimetics (α,α-GM-LAM) induced potent activation
of NF-κB signaling in hTLR4/hMD-2/CD14-transfected HEK293 cells
and robust LPS-like cytokines expression in macrophages and dendritic
cells. Thus, restricting the conformational flexibility of Lipid A
by fixing the molecular shape of its carbohydrate backbone in the
“agonistic” conformation attained by a rigid αGlcN(1↔1)αMan scaffold
represents
an efficient approach toward powerful and adjustable TLR4 activation.
Collapse
Affiliation(s)
- Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fujimoto Y, Shimoyama A, Saeki A, Kitayama N, Kasamatsu C, Tsutsui H, Fukase K. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. MOLECULAR BIOSYSTEMS 2013; 9:987-96. [PMID: 23429860 DOI: 10.1039/c3mb25477a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic studies of lipid A and LPS partial structures have been performed to investigate the relationship between structures and functions of LPS. Recent studies have suggested several pathological implications of LPS from parasitic bacteria due to its influence on the host immune responses. To address this issue, we established an efficient synthetic strategy that is widely applicable to the synthesis of various lipid As by using a key disaccharide intermediate with selectively cleavable protecting groups. Porphyromonas gingivalis and Helicobacter pylori lipid As were synthesized and their biological activities were evaluated. All synthetic lipid As did not induce strong inflammatory responses: some are very weak cytokine inducers and others are antagonistic in IL-6 and IL-8 induction with E. coli LPS. On the other hand, P. gingivalis lipid As showed potent IL-18 inducing activity. Since IL-18 has been shown to correlate with chronic inflammation, P. gingivalis LPS may be implicated in the chronic inflammatory responses.
Collapse
Affiliation(s)
- Yukari Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lewicky JD, Ulanova M, Jiang ZH. Improving the immunostimulatory potency of diethanolamine-containing lipid A mimics. Bioorg Med Chem 2013; 21:2199-2209. [PMID: 23490149 DOI: 10.1016/j.bmc.2013.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
Abstract
Lipid A is the active principal of gram negative bacterial lipopolysaccharide (LPS) in the activation of Toll-like receptor 4 (TLR4). Given the important role TLR4 plays in innate immunity and the development of adaptive immune responses, ligands that can modulate TLR4-mediated signaling have great therapeutic potential. Recently, we have reported a series of monophosphorylated lipid A mimics as potential ligands of TLR4, in which a diethanolamine moiety is employed to replace the reducing end (d-glucosamine). In this paper, we describe the synthesis of two further diethanolamine-containing lipid A mimics, 3 and 4, in an effort to mimic more closely the di-phosphate nature of natural lipid A. Both mimic 3, with an additional phosphate on the diethanolamine acyclic scaffold, and mimic 4, with a terminal carboxylic acid moiety as a phosphate bioisostere, serve to increase the potency of the immunostimulatory response induced, as measured by the induction of the cytokines TNF-α, IL-6, and IL-1β in the human monocytic cell line THP-1. In addition, mechanistic studies involving the known TLR4 antagonist lipid IVa confirm TLR4 as the target of the diethanolamine-containing lipid A mimics.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1.
| |
Collapse
|
18
|
Ichiyanagi T, Fukunaga M, Tagashira R, Hayashi S, Nanjo M, Yamasaki R. A new Kdo derivative for the synthesis of an inner-core disaccharide of lipopolysaccharides and lopooligosaccharides. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Nomura K, Maeda M, Sugase K, Kusumoto S. Lipopolysaccharide induces raft domain expansion in membrane composed of a phospholipid-cholesterol-sphingomyelin ternary system. Innate Immun 2010; 17:256-68. [PMID: 20418256 DOI: 10.1177/1753425910365944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The molecular behavior and interaction of Re-type lipopolysaccharide (ReLPS) and phospholipids were investigated in two different types of model membrane systems, a pure phospholipid membrane consisting of 1,2-dielaidoyl-snglycero-3-phosphoethanolamine (DEPE) and a raft-forming membrane composed of equimolar DEPE, sphingomyelin (SM), and cholesterol (Chol) by solid-state NMR spectroscopy. A remarkable influence of ReLPS on the property of lipid bilayer was found by analyzing the (13)C-NMR spectra. Namely, while both liquid-ordered (L(o)) and liquid-disordered (L(d)) phases co-exist in DEPE/SM/Chol, only the L(o) phase is present in DEPE/SM/Chol/ReLPS. This clearly indicates that ReLPS induces expansion of the raft area in the raft-forming membrane. The (1)H spin-lattice relaxation times in the rotating frame T( 1ρ) (H) in the two different membranes, DEPE/ReLPS and DEPE/SM/Chol/ReLPS, indicate that the motion of DEPE is affected by the presence of ReLPS, Chol, and SM, and much faster than that of ReLPS in both membranes. The ReLPS in the raft-forming membrane, in particular, accelerated the movement of DEPE. Thus, this study shows the possibility that LPS induces the expansion of raft region and the rapid motion of the raft-forming membranes to favor molecular interactions in the animal cell membrane during innate immune recognition.
Collapse
Affiliation(s)
- Kaoru Nomura
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka, Japan.
| | | | | | | |
Collapse
|
20
|
Fujimoto Y, Tanaka K, Shimoyama A, Fukase K. Self and Nonself Recognition with Bacterial and Animal Glycans, Surveys by Synthetic Chemistry. Methods Enzymol 2010; 478:323-42. [DOI: 10.1016/s0076-6879(10)78016-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mamat U, Schmidt H, Munoz E, Lindner B, Fukase K, Hanuszkiewicz A, Wu J, Meredith TC, Woodard RW, Hilgenfeld R, Mesters JR, Holst O. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J Biol Chem 2009; 284:22248-22262. [PMID: 19546212 DOI: 10.1074/jbc.m109.033308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable Kdo transferase WaaA from A. aeolicus and provide evidence that the enzyme is monofunctional. Compositional analysis and mass spectrometry of purified A. aeolicus LPS, showing the incorporation of a single Kdo residue as an integral component of the LPS, implicated a monofunctional Kdo transferase in LPS biosynthesis of A. aeolicus. Further, heterologous expression of the A. aeolicus waaA gene in a newly constructed Escherichia coli DeltawaaA suppressor strain resulted in synthesis of lipid IVA precursors substituted with one Kdo sugar. When highly purified WaaA of A. aeolicus was subjected to in vitro assays using mass spectrometry for detection of the reaction products, the enzyme was found to catalyze the transfer of only a single Kdo residue from CMP-Kdo to differently modified lipid A acceptors. The Kdo transferase was capable of utilizing a broad spectrum of acceptor substrates, whereas surface plasmon resonance studies indicated a high selectivity for the donor substrate.
Collapse
Affiliation(s)
- Uwe Mamat
- Divisions of Structural Biochemistry, D-23845 Borstel, Germany
| | - Helgo Schmidt
- Divisions of Structural Biochemistry, D-23845 Borstel, Germany; Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, D-23538 Lübeck, Germany
| | - Eva Munoz
- the Institutes of Chemistry, D-23538 Lübeck, Germany
| | - Buko Lindner
- Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | | | - Jing Wu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Timothy C Meredith
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Rolf Hilgenfeld
- Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, D-23538 Lübeck, Germany
| | - Jeroen R Mesters
- Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, D-23538 Lübeck, Germany
| | - Otto Holst
- Divisions of Structural Biochemistry, D-23845 Borstel, Germany
| |
Collapse
|
22
|
Fukase Y, Fujimoto Y, Adachi Y, Suda Y, Kusumoto S, Fukase K. Synthesis ofRubrivivax gelatinosusLipid A and Analogues for Investigation of the Structural Basis for Immunostimulating and Inhibitory Activities. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Fujimoto Y, Iwata M, Imakita N, Shimoyama A, Suda Y, Kusumoto S, Fukase K. Synthesis of immunoregulatory Helicobacter pylori lipopolysaccharide partial structures. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|