1
|
Karna D, Liang L, Sharma G, Mandal S, Asamitsu S, Kawamoto Y, Hashiya K, Bando T, Sugiyama H, Mao H. Modulation of dynamic DNA G-quadruplex structures in the hTERT promoter region by ligands. Nucleic Acids Res 2024; 52:10775-10787. [PMID: 39217470 PMCID: PMC11472034 DOI: 10.1093/nar/gkae754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Small molecules can inhibit cellular processes such as replication and transcription by binding to the promoter regions that are prone to form G-quadruplexes. However, since G-quadruplexes exist throughout the human genome, the G-quadruplex binders suffer from specificity issues. To tackle this problem, a G-quadruplex binder (Pyridostatin, or PDS) is conjugated with a ligand (Polyamide, or PA) that can specifically recognize DNA sequences flanking the G-quadruplex forming region. The binding mechanism of this hybrid ligand to the hTERT promoter region (hTERT 5-12) is then elucidated using optical tweezers. During mechanical unfolding processes, different intermediate structures of hTERT 5-12 in presence of PDS, PA, or PA-PDS conjugate are observed. These intermediate structures are consistent with two folding patterns of G-quadruplexes in the hTERT 5-12 fragment. While the duplex DNA binder PA facilitates the folding of a hairpin-G-quadruplex structure, the PDS assists the formation of two tandem G-quadruplexes. Both replication stop assay in vitro and dual luciferase assay in vivo established the effectiveness of the PA-PDS conjugate for hTERT 5-12 targeting. We expect such a ligand dependent folding dynamics will provide guidelines to the development of drugs that not only target hTERT expressions, but also other oncogenes via interactions with specific G-quadruplex structures formed in their promotor regions.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Lin Liang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Grinsun Sharma
- School of Biomedical Science, Kent State University, Kent, OH 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- School of Biomedical Science, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Rico-Pasto M, Alemany A, Ritort F. Force-Dependent Folding Kinetics of Single Molecules with Multiple Intermediates and Pathways. J Phys Chem Lett 2022; 13:1025-1032. [PMID: 35072478 PMCID: PMC9882750 DOI: 10.1021/acs.jpclett.1c03521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most single-molecule studies derive the kinetic rates of native, intermediate, and unfolded states from equilibrium hopping experiments. Here, we apply the Kramers kinetic diffusive model to derive the force-dependent kinetic rates of intermediate states from nonequilibrium pulling experiments. From the kinetic rates, we also extract the force-dependent kinetic barriers and the equilibrium folding energies. We apply our method to DNA hairpins with multiple folding pathways and intermediates. The experimental results agree with theoretical predictions. Furthermore, the proposed nonequilibrium single-molecule approach permits us to characterize kinetic and thermodynamic properties of native, unfolded, and intermediate states that cannot be derived from equilibrium hopping experiments.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| | - Anna Alemany
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden, 2333ZC, The Netherlands
| | - Felix Ritort
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| |
Collapse
|
4
|
Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H. Chirality transmission in macromolecular domains. Nat Commun 2022; 13:76. [PMID: 35013247 PMCID: PMC8748818 DOI: 10.1038/s41467-021-27708-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. Chiral communication can propagate in secondary structures within the effective intermolecular force (IMF) range but it is not known whether long-range chiral communication exists between tertiary peptide structures. Here, the authors use single-molecule force spectroscopy to investigate chiral interaction between DNA duplexes/triplexes and peptide coiled-coils and demonstrate chiral communication beyond the IMF distance.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Mathias Bogetoft Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Asha Brown
- ATDBio Ltd., Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Shixi Song
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
5
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
6
|
Pandey S, Xiang Y, Walpita Kankanamalage DVD, Jayawickramarajah J, Leng Y, Mao H. Measurement of Single-Molecule Forces in Cholesterol and Cyclodextrin Host-Guest Complexes. J Phys Chem B 2021; 125:11112-11121. [PMID: 34523939 PMCID: PMC8788999 DOI: 10.1021/acs.jpcb.1c03916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological host molecules such as β-cyclodextrins (β-CDs) have been used to remove cholesterol guests from membranes and artery plaques. In this work, we calibrated the host-guest intermolecular mechanical forces (IMMFs) between cholesterol and cyclodextrin complexes by combining single-molecule force spectroscopy in optical tweezers and computational molecular simulations for the first time. Compared to native β-CD, methylated beta cyclodextrins complexed with cholesterols demonstrated higher mechanical stabilities due to the loss of more high-energy water molecules inside the methylated β-CD cavities. This result is consistent with the finding that methylated β-CD is more potent at solubilizing cholesterols than β-CD, suggesting that the IMMF can serve as a novel indicator to evaluate the solubility of small molecules such as cholesterols. Importantly, we found that the force spectroscopy measured in such biological host-guest complexes is direction-dependent: pulling from the alkyl end of the cholesterol molecule resulted in a larger IMMF than that from the hydroxyl end of the cholesterol molecule. Molecular dynamics coupled with umbrella sampling simulations further revealed that cholesterol molecules tend to enter or leave from the wide opening of cyclodextrins. Such an orientation rationalizes that cyclodextrins are rather efficient at extracting cholesterols from the phospholipid bilayer in which hydroxyl groups of cholesterols are readily exposed to the hydrophobic cavities of cyclodextrins. We anticipate that the IMMF measured by both experimental and computational force spectroscopy measurements help elucidate solubility mechanisms not only for cholesterols in different environments but also to host-guest systems in general, which have been widely exploited for their solubilization properties in drug delivery, for example.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| | - Yuan Xiang
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | | | | | - Yongsheng Leng
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| |
Collapse
|
7
|
Pandey S, Li Y, Young MD, Mandal S, Lu L, Shelley JT, Mao H. Cooperative Heteroligand Interaction with G-Quadruplexes Shows Evidence of Allosteric Binding. Biochemistry 2020; 59:3438-3446. [PMID: 32833433 PMCID: PMC7511437 DOI: 10.1021/acs.biochem.0c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although allosteric binding of small molecules is commonplace in protein structures, it is rather rare in DNA species such as G-quadruplexes. By using CD melting, here, we found binding of the small-molecule ligands PDS and L2H2-6OTD to the telomeric DNA G-quadruplex was cooperative. Mass spectrometry indicated a 1:1:1 ratio in the ternary binding complex of the telomeric G-quadruplex, PDS, and L2H2-6OTD. Compared to the binding of each individual ligand to the G-quadruplex, single-molecule mechanical unfolding assays revealed a significantly decreased dissociation constant when one ligand is evaluated in the presence of another. This demonstrates that cooperative binding of PDS and L2H2-6OTD to the G-quadruplex is allosteric, which is also supported by the mass spectra data that indicated the ejection of coordinated sodium ions upon binding of the heteroligands to the G-quadruplex. The unprecedented observation of the allosteric ligand binding to higher-ordered structures of DNA may help to design more effective ligands to target non-B DNA species involved in many critical cellular processes.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Yuanyuan Li
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Montwaun D. Young
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Laichun Lu
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiaominxiang Road, Beijing, 100730, China
| | - Jacob T. Shelley
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
8
|
Mandal S, Zhang X, Pandey S, Mao H. Single-Molecule Topochemical Analyses for Large-Scale Multiplexing Tasks. Anal Chem 2019; 91:13485-13493. [PMID: 31553880 PMCID: PMC7011503 DOI: 10.1021/acs.analchem.9b02483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multitasking is the pivotal feature in next-generation chemo- or bioanalyses. However, simultaneous analyses rarely exceed over three different tasks, which is ascribed to the limited space to accommodate analyzing units and the compromised signal-to-noise (S/N) level as the number of tasks increases. Here, by leveraging superior S/N of single-molecule techniques, we analyzed five microRNA biomarkers by spatially encoding miRNA recognition units with nanometers resolution in a DNA template, while decoding the analyte binding temporally in seconds. The hairpin stem is interspersed by internal loops to encode recognition units for miRNA. By mechanical unfolding of the hairpin, individual internal loops are sequentially interrogated for the binding of each miRNA. Using this so-called topochemical spatiotemporal analysis, we were able to achieve subpicomolar detection limits of miRNAs. We anticipate that this new single-molecule topochemical analysis can massively analyze single-molecule targets.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Xiaoqing Zhang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Mandal S, Kawamoto Y, Yue Z, Hashiya K, Cui Y, Bando T, Pandey S, Hoque ME, Hossain MA, Sugiyama H, Mao H. Submolecular dissection reveals strong and specific binding of polyamide-pyridostatin conjugates to human telomere interface. Nucleic Acids Res 2019; 47:3295-3305. [PMID: 30820532 PMCID: PMC6468309 DOI: 10.1093/nar/gkz135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
To modulate biological functions, G-quadruplexes in genome are often non-specifically targeted by small molecules. Here, specificity is increased by targeting both G-quadruplex and its flanking duplex DNA in a naturally occurring dsDNA-ssDNA telomere interface using polyamide (PA) and pyridostatin (PDS) conjugates (PA-PDS). We innovated a single-molecule assay in which dissociation constant (Kd) of the conjugate can be separately evaluated from the binding of either PA or PDS. We found Kd of 0.8 nM for PA-PDS, which is much lower than PDS (Kd ∼ 450 nM) or PA (Kd ∼ 35 nM). Functional assays further indicated that the PA-PDS conjugate stopped the replication of a DNA polymerase more efficiently than PA or PDS. Our results not only established a new method to dissect multivalent binding into actions of individual monovalent components, they also demonstrated a strong and specific G-quadruplex targeting strategy by conjugating highly specific duplex-binding molecules with potent quadruplex ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zhizhou Yue
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | | | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
Punnoose JA, Ma Y, Hoque ME, Cui Y, Sasaki S, Guo AH, Nagasawa K, Mao H. Random Formation of G-Quadruplexes in the Full-Length Human Telomere Overhangs Leads to a Kinetic Folding Pattern with Targetable Vacant G-Tracts. Biochemistry 2018; 57:6946-6955. [PMID: 30480434 PMCID: PMC6684037 DOI: 10.1021/acs.biochem.8b00957] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-Quadruplexes formed in the 3' telomere overhang (∼200 nucleotides) have been shown to regulate biological functions of human telomeres. The mechanism governing the population pattern of multiple telomeric G-quadruplexes is yet to be elucidated inside the telomeric overhang in a time window shorter than thermodynamic equilibrium. Using a single-molecule force ramping assay, we quantified G-quadruplex populations in telomere overhangs over a full physiological range of 99-291 nucleotides. We found that G-quadruplexes randomly form in these overhangs within seconds, which leads to a population governed by a kinetic, rather than a thermodynamic, folding pattern. The kinetic folding gives rise to vacant G-tracts between G-quadruplexes. By targeting these vacant G-tracts using complementary DNA fragments, we demonstrated that binding to the telomeric G-quadruplexes becomes more efficient and specific for telomestatin derivatives.
Collapse
Affiliation(s)
| | - Yue Ma
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Yunxi Cui
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Shogo Sasaki
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Athena Huixin Guo
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
11
|
Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proc Natl Acad Sci U S A 2018; 115:9539-9544. [PMID: 30181280 DOI: 10.1073/pnas.1805939115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to the small size of a nanoconfinement, the property of water contained inside is rather challenging to probe. Herein, we measured the amount of water molecules released during the folding of individual G-quadruplex and i-motif structures, from which water activities are estimated in the DNA nanocages prepared by 5 × 5 to 7 × 7 helix bundles (cross-sections, 9 × 9 to 15 × 15 nm). We found water activities decrease with reducing cage size. In the 9 × 9-nm cage, water activity was reduced beyond the reach of regular cosolutes such as polyethylene glycol (PEG). With this set of nanocages, we were able to retrieve the change in water molecules throughout the folding trajectory of G-quadruplex or i-motif. We found that water molecules absorbed from the unfolded to the transition states are much fewer than those lost from the transition to the folded states. The overall loss of water therefore drives the folding of G-quadruplex or i-motif in nanocages with reduced water activities.
Collapse
|
12
|
Mandal S, Selvam S, Cui Y, Hoque ME, Mao H. Mechanical Cooperativity in DNA Cruciform Structures. Chemphyschem 2018; 19:2627-2634. [PMID: 29992736 DOI: 10.1002/cphc.201800480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 01/20/2023]
Abstract
Unlike short-range chemical bonds that maintain chemical properties of a biological molecule, long-range mechanical interactions determine mechanochemical properties of molecules. Limited by experimental approaches, however, direct quantification of such mechanical interactions is challenging. Using magneto-optical tweezers, herein we found torque can change the topology and mechanochemical property of DNA cruciform, a naturally occurring structure consisting of two opposing hairpin arms. Both mechanical and thermodynamic stabilities of DNA cruciforms increase with positive torque, which have been attributed to the topological coupling between DNA template and the cruciform. The coupling exists simultaneously in both arms of a cruciform, which coordinates the folding and unfolding of the cruciform, leading to a mechanical cooperativity not observed previously. As DNA torque readily varies during transcriptions, our finding suggests that DNA cruciforms can modulate transcriptions by adjusting their properties according to the torque.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Sangeetha Selvam
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Yunxi Cui
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Mohammed Enamul Hoque
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
13
|
Gutiérrez I, Garavís M, de Lorenzo S, Villasante A, González C, Arias-Gonzalez JR. Single-Stranded Condensation Stochastically Blocks G-Quadruplex Assembly in Human Telomeric RNA. J Phys Chem Lett 2018; 9:2498-2503. [PMID: 29688724 DOI: 10.1021/acs.jpclett.8b00722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TERRA is an RNA molecule transcribed from human subtelomeric regions toward chromosome ends potentially involved in regulation of heterochromatin stability, semiconservative replication, and telomerase inhibition, among others. TERRA contains tandem repeats of the sequence GGGUUA, with a strong tendency to fold into a four-stranded arrangement known as a parallel G-quadruplex. Here, we demonstrate by using single-molecule force spectroscopy that this potential is limited by the inherent capacity of RNA to self-associate randomly and further condense into entropically more favorable structures. We stretched RNA constructions with more than four and less than eight hexanucleotide repeats, thus unable to form several G-quadruplexes in tandem, flanked by non-G-rich overhangs of random sequence by optical tweezers on a one by one basis. We found that condensed RNA stochastically blocks G-quadruplex folding pathways with a near 20% probability, a behavior that is not found in DNA analogous molecules.
Collapse
Affiliation(s)
- Irene Gutiérrez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
| | - Miguel Garavís
- Instituto de Química Física Rocasolano, CSIC , C/Serrano 119 , 28006 Madrid , Spain
| | - Sara de Lorenzo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
| | - Alfredo Villasante
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM , C/Nicolás Cabrera 1 , 28049 Madrid , Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC , C/Serrano 119 , 28006 Madrid , Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" , Cantoblanco, 28049 Madrid , Spain
| |
Collapse
|
14
|
Selvam S, Mandal S, Mao H. Quantification of Chemical and Mechanical Effects on the Formation of the G-Quadruplex and i-Motif in Duplex DNA. Biochemistry 2017; 56:4616-4625. [PMID: 28738141 DOI: 10.1021/acs.biochem.7b00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of biologically significant tetraplex DNA species, such as G-quadruplexes and i-motifs, is affected by chemical (ions and pH) and mechanical [superhelicity (σ) and molecular crowding] factors. Because of the extremely challenging experimental conditions, the relative importance of these factors on tetraplex folding is unknown. In this work, we quantitatively evaluated the chemical and mechanical effects on the population dynamics of DNA tetraplexes in the insulin-linked polymorphic region using magneto-optical tweezers. By mechanically unfolding individual tetraplexes, we found that ions and pH have the largest effects on the formation of the G-quadruplex and i-motif, respectively. Interestingly, superhelicity has the second largest effect followed by molecular crowding conditions. While chemical effects are specific to tetraplex species, mechanical factors have generic influences. The predominant effect of chemical factors can be attributed to the fact that they directly change the stability of a specific tetraplex, whereas the mechanical factors, superhelicity in particular, reduce the stability of the competing species by changing the kinetics of the melting and annealing of the duplex DNA template in a nonspecific manner. The substantial dependence of tetraplexes on superhelicity provides strong support that DNA tetraplexes can serve as topological sensors to modulate fundamental cellular processes such as transcription.
Collapse
Affiliation(s)
- Sangeetha Selvam
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| |
Collapse
|
15
|
Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P, Pasquali S, Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J Chem Theory Comput 2016; 12:6077-6097. [DOI: 10.1021/acs.jctc.6b00667] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Departments of Physical
Chemistry, Faculty of Science, Palacký University, 17. listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Liuba Mazzanti
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Tristan Cragnolini
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
16
|
Kang HJ, Cui Y, Yin H, Scheid A, Hendricks WPD, Schmidt J, Sekulic A, Kong D, Trent JM, Gokhale V, Mao H, Hurley LH. A Pharmacological Chaperone Molecule Induces Cancer Cell Death by Restoring Tertiary DNA Structures in Mutant hTERT Promoters. J Am Chem Soc 2016; 138:13673-13692. [PMID: 27643954 DOI: 10.1021/jacs.6b07598] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of human telomerase reverse transcriptase (hTERT) is necessary for limitless replication in tumorigenesis. Whereas hTERT is transcriptionally silenced in normal cells, most tumor cells reactivate hTERT expression by alleviating transcriptional repression through diverse genetic and epigenetic mechanisms. Transcription-activating hTERT promoter mutations have been found to occur at high frequencies in multiple cancer types. These mutations have been shown to form new transcription factor binding sites that drive hTERT expression, but this model cannot fully account for differences in wild-type (WT) and mutant promoter activation and has not yet enabled a selective therapeutic strategy. Here, we demonstrate a novel mechanism by which promoter mutations activate hTERT transcription, which also sheds light on a unique therapeutic opportunity. Promoter mutations occur in a core promoter region that forms tertiary structures consisting of a pair of G-quadruplexes involved in transcriptional silencing. We show that promoter mutations exert a detrimental effect on the folding of one of these G-quadruplexes, resulting in a nonfunctional silencer element that alleviates transcriptional repression. We have also identified a small drug-like pharmacological chaperone (pharmacoperone) molecule, GTC365, that acts at an early step in the G-quadruplex folding pathway to redirect mutant promoter G-quadruplex misfolding, partially reinstate the correct folding pathway, and reduce hTERT activity through transcriptional repression. This transcription-mediated repression produces cancer cell death through multiple routes including both induction of apoptosis through inhibition of hTERT's role in regulating apoptosis-related proteins and induction of senescence by decreasing telomerase activity and telomere length. We demonstrate the selective therapeutic potential of this strategy in melanoma cells that overexpress hTERT.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Yunxi Cui
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Holly Yin
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Amy Scheid
- College of Science, University of Arizona , 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - William P D Hendricks
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Jessica Schmidt
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Aleksandar Sekulic
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Deming Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Jeffrey M Trent
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Vijay Gokhale
- BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Laurence H Hurley
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States.,BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States.,Arizona Cancer Center , 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| |
Collapse
|
17
|
Mandal S, Selvam S, Shrestha P, Mao H. Mechanochemical Sensing of Single and Few Hg(II) Ions Using Polyvalent Principles. Anal Chem 2016; 88:9479-9485. [DOI: 10.1021/acs.analchem.6b01899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shankar Mandal
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sangeetha Selvam
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Prakash Shrestha
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
18
|
Shrestha P, Emura T, Koirala D, Cui Y, Hidaka K, Maximuck WJ, Endo M, Sugiyama H, Mao H. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Res 2016; 44:6574-82. [PMID: 27387283 PMCID: PMC5001620 DOI: 10.1093/nar/gkw610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 06/24/2016] [Indexed: 01/13/2023] Open
Abstract
DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yunxi Cui
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - William J Maximuck
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Cui Y, Kong D, Ghimire C, Xu C, Mao H. Mutually Exclusive Formation of G-Quadruplex and i-Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA. Biochemistry 2016; 55:2291-9. [DOI: 10.1021/acs.biochem.6b00016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Deming Kong
- Key
Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chiran Ghimire
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Cuixia Xu
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
20
|
Selvam S, Yu Z, Mao H. Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res 2015; 44:45-55. [PMID: 26626151 PMCID: PMC4705664 DOI: 10.1093/nar/gkv1326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/12/2015] [Indexed: 02/02/2023] Open
Abstract
Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex-quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5'-end, followed by the stronger G-quadruplex at the 3'-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.
Collapse
Affiliation(s)
- Sangeetha Selvam
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Zhongbo Yu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
21
|
Shrestha P, Mandal S, Mao H. Mechanochemical Sensing: A Biomimetic Sensing Strategy. Chemphyschem 2015; 16:1829-37. [PMID: 25916512 DOI: 10.1002/cphc.201500080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 01/14/2023]
Abstract
Existing biosensors employ two major components: analyte recognition and signal transduction. Although specificity is achieved through analyte recognition, sensitivity is usually enhanced through a chemical amplification stage that couples the two main units in a sensor. Although highly sensitive, the extra chemical amplification stage complicates the sensing protocol. In addition, it separates the two elements spatiotemporally, reducing the real-time response of the biosensor. In this review, we discuss the new mechanochemical biosensors that employ mechanochemical coupling strategies to overcome these issues. By monitoring changes in the mechanical properties of a single-molecule template upon analyte binding, single-molecule sensitivity is reached. As chemical amplification becomes unnecessary in this single-molecule mechanochemical sensing (SMMS) strategy, real-time sensing is achieved.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA)
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA).
| |
Collapse
|
22
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Jiang HX, Cui Y, Zhao T, Fu HW, Koirala D, Punnoose JA, Kong DM, Mao H. Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures. Sci Rep 2015; 5:9255. [PMID: 25787838 PMCID: PMC5380134 DOI: 10.1038/srep09255] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/25/2015] [Indexed: 02/05/2023] Open
Abstract
G-triplexes are non-canonical DNA structures formed by G-rich sequences with three G-tracts. Putative G-triplex-forming sequences are expected to be more prevalent than putative G-quadruplex-forming sequences. However, the research on G-triplexes is rare. In this work, the effects of molecular crowding and several physiologically important metal ions on the formation and stability of G-triplexes were examined using a combination of circular dichroism, thermodynamics, optical tweezers and calorimetry techniques. We determined that molecular crowding conditions and cations, such as Na+, K+, Mg2+ and Ca2+, promote the formation of G-triplexes and stabilize these structures. Of these four metal cations, Ca2+ has the strongest stabilizing effect, followed by K+, Mg2+, and Na+ in a decreasing order. The binding of K+ to G-triplexes is accompanied by exothermic heats, and the binding of Ca2+ with G-triplexes is characterized by endothermic heats. G-triplexes formed from two G-triad layers are not stable at physiological temperatures; however, G-triplexes formed from three G-triads exhibit melting temperatures higher than 37°C, especially under the molecular crowding conditions and in the presence of K+ or Ca2+. These observations imply that stable G-triplexes may be formed under physiological conditions.
Collapse
Affiliation(s)
- Hong-Xin Jiang
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin. 300071, P R China [2] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin. 300071, P R China
| | - Yunxi Cui
- Department of Chemistry &Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Ting Zhao
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin. 300071, P R China [2] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin. 300071, P R China
| | - Hai-Wei Fu
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin. 300071, P R China [2] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin. 300071, P R China
| | - Deepak Koirala
- Department of Chemistry &Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - De-Ming Kong
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin. 300071, P R China [2] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin. 300071, P R China
| | - Hanbin Mao
- Department of Chemistry &Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
24
|
Yangyuoru PM, Di Antonio M, Ghimire C, Biffi G, Balasubramanian S, Mao H. Dual binding of an antibody and a small molecule increases the stability of TERRA G-quadruplex. Angew Chem Int Ed Engl 2015; 54:910-3. [PMID: 25421962 PMCID: PMC4506565 DOI: 10.1002/anie.201408113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/08/2014] [Indexed: 11/30/2022]
Abstract
In investigating the binding interactions between the human telomeric RNA (TERRA) G-quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ-selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single-molecule mechanical unfolding experiments revealed a population (48%) with substantially increased mechanical and thermodynamic stability. Force-jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G-quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA-GQ-ligand complex may inspire new strategies for the selective stabilization of G-quadruplexes in cells.
Collapse
Affiliation(s)
- Philip M Yangyuoru
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| | - Marco Di Antonio
- Department of Chemistry, University of CambridgeLensfield Road, CB2 1EW (UK)
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
| | - Chiran Ghimire
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| | - Giulia Biffi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
| | - Shankar Balasubramanian
- Department of Chemistry, University of CambridgeLensfield Road, CB2 1EW (UK)
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
- School of Clinical Medicine, University of CambridgeAddenbrooke&s Hospital, Hills Road, Cambridge CB2 0SP (UK)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| |
Collapse
|
25
|
Yangyuoru PM, Di Antonio M, Ghimire C, Biffi G, Balasubramanian S, Mao H. Dual Binding of an Antibody and a Small Molecule Increases the Stability of TERRA G-Quadruplex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 127:924-927. [PMID: 26300569 PMCID: PMC4535663 DOI: 10.1002/ange.201408113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/08/2014] [Indexed: 11/24/2022]
Abstract
In investigating the binding interactions between the human telomeric RNA (TERRA) G-quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ-selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single-molecule mechanical unfolding experiments revealed a population (48 %) with substantially increased mechanical and thermodynamic stability. Force-jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G-quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA-GQ-ligand complex may inspire new strategies for the selective stabilization of G-quadruplexes in cells.
Collapse
Affiliation(s)
- Philip M Yangyuoru
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| | - Marco Di Antonio
- Department of Chemistry, University of Cambridge Lensfield Road, CB2 1EW (UK) E-mail: ; Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK)
| | - Chiran Ghimire
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| | - Giulia Biffi
- Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK)
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge Lensfield Road, CB2 1EW (UK) E-mail: ; Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK) ; School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital Hills Road, Cambridge CB2 0SP (UK)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| |
Collapse
|
26
|
Zhao T, Wang YL, Zhu LN, Huo YF, Wang YJ, Kong DM. A water-soluble cationic porphyrin showing pH-dependent G-quadruplex recognition specificity and DNA photocleavage activity. RSC Adv 2015. [DOI: 10.1039/c5ra05970d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A new water-soluble cationic porphyrin was synthesized. It shows pH-dependent G-quadruplex recognition specificity against duplex DNA, pH-dependent photocleavage activity towards duplex DNA and pH-dependent phototoxicity to cells.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ya-Ling Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071
- China
- Key Laboratory of Bioactive Materials (Ministry of Education)
- College of Life Sciences
| | - Li-Na Zhu
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Yan-Fang Huo
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yong-Jian Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071
- China
- Key Laboratory of Bioactive Materials (Ministry of Education)
- College of Life Sciences
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
27
|
Abraham Punnoose J, Cui Y, Koirala D, Yangyuoru PM, Ghimire C, Shrestha P, Mao H. Interaction of G-quadruplexes in the full-length 3' human telomeric overhang. J Am Chem Soc 2014; 136:18062-9. [PMID: 25438191 DOI: 10.1021/ja510079u] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 3' human telomeric overhang provides ample opportunities for the formation and interaction of G-quadruplexes, which have shown impacts on many biological functions including telomerase activities in the telomere region. However, in the few investigations on DNA constructs that approach to the full length of the human telomeric overhang, the presence of higher-order quadruplex-quadruplex interactions is still a subject of debate. Herein, we employed dynamic splint ligation (DSL) to prepare a DNA construct, 5'-(TTAGGG)24 or 24G, which has the length comparable to the full stretch of 3' human telomeric overhang. Using mechanical unfolding assays in laser tweezers, we observed a minor population (∼5%) of higher-order interactions between G-quadruplexes, while the majority of the quadruplexes follow the bead-on-a-string model. Analyses on the noninteracting G-quadruplexes in the 24G construct showed features similar to those of the stand-alone G-quadruplexes in the 5'-(TTAGGG)4 (4G) construct. As each 24G construct contains as many as six G-quadruplexes, this method offers increased throughput for the time-consuming mechanical unfolding experiments of non-B DNA structures.
Collapse
Affiliation(s)
- Jibin Abraham Punnoose
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu Z, Cui Y, Selvam S, Ghimire C, Mao H. Dissecting Cooperative Communications in a Protein with a High-Throughput Single-Molecule Scalpel. Chemphyschem 2014; 16:223-32. [DOI: 10.1002/cphc.201402443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 01/24/2023]
|
29
|
Yu Z, Selvam S, Mao H. Intermediates Stabilized by Tryptophan Pairs Exist in Trpzip Beta-Hairpins. Biochemistry 2014; 53:5978-86. [DOI: 10.1021/bi500194g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhongbo Yu
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sangeetha Selvam
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
30
|
Shrestha P, Xiao S, Dhakal S, Tan Z, Mao H. Nascent RNA transcripts facilitate the formation of G-quadruplexes. Nucleic Acids Res 2014; 42:7236-46. [PMID: 24829453 PMCID: PMC4066803 DOI: 10.1093/nar/gku416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent discovery of the RNA/DNA hybrid G-quadruplexes (HQs) and their potential wide-spread occurrence in human genome during transcription have suggested a new and generic transcriptional control mechanism. The G-rich sequence in which HQ may form can coincide with that for DNA G-quadruplexes (GQs), which are well known to modulate transcriptions. Understanding the molecular interaction between HQ and GQ is, therefore, of pivotal importance to dissect the new mechanism for transcriptional regulation. Using a T7 transcription model, herein we found that GQ and HQ form in a natural sequence, (GGGGA)4, downstream of many transcription start sites. Using a newly-developed single-molecular stalled-transcription assay, we revealed that RNA transcripts helped to populate quadruplexes at the expense of duplexes. Among quadruplexes, HQ predominates GQ in population and mechanical stabilities, suggesting HQ may serve as a better mechanical block during transcription. The fact that HQ and GQ folded within tens of milliseconds in the presence of RNA transcripts provided justification for the co-transcriptional folding of these species. The catalytic role of RNA transcripts in the GQ formation was strongly suggested as the GQ folded >7 times slower without transcription. These results shed light on the possible synergistic effect of GQs and HQs on transcriptional controls.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Shan Xiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Soma Dhakal
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Zheng Tan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
31
|
Cui Y, Koirala D, Kang H, Dhakal S, Yangyuoru P, Hurley LH, Mao H. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL. Nucleic Acids Res 2014; 42:5755-64. [PMID: 24609386 PMCID: PMC4027204 DOI: 10.1093/nar/gku185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 12/20/2022] Open
Abstract
Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules.
Collapse
Affiliation(s)
- Yunxi Cui
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - HyunJin Kang
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Soma Dhakal
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Philip Yangyuoru
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
32
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
33
|
An N, Fleming AM, Burrows CJ. Interactions of the human telomere sequence with the nanocavity of the α-hemolysin ion channel reveal structure-dependent electrical signatures for hybrid folds. J Am Chem Soc 2013; 135:8562-70. [PMID: 23682802 DOI: 10.1021/ja400973m] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human telomeric DNA consists of tandem repeats of the sequence 5'-TTAGGG-3', including a 3' terminal single-stranded overhang of 100-200 nucleotides that can fold into quadruplex structures in the presence of suitable metal ions. In the presence of an applied voltage, the α-hemolysin (α-HL) protein ion channel can produce unique current patterns that are found to be characteristic for various interactions between G-quadruplexes and the protein nanocavity. In this study, the human telomere in a complete sequence context, 5'-TAGGG(TTAGGG)3TT-3', was evaluated with respect to its multiple folding topologies. Notably, the coexistence of two interchangeable conformations of the K(+)-induced folds, hybrid-1 and hybrid-2, were readily resolved at a single-molecule level along with triplex folding intermediates, whose characterization has been challenging in experiments that measure the bulk solution. These results enabled us to profile the thermal denaturation process of these structures to elucidate the relative distributions of hybrid-1, hybrid-2, and folding intermediates such as triplexes. For example, at 37 °C, pH 7.9, in 50 mM aqueous KCl, the ratio of hybrid-1:hybrid-2:triplex is approximately 11:5:1 in dilute solution. The results obtained lay the foundation for utilizing the α-HL ion channel as a simple tool for monitoring how small molecules and physical context shift the equilibrium between the many G-quadruplex folds of the human telomere sequence.
Collapse
Affiliation(s)
- Na An
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
34
|
Dhakal S, Cui Y, Koirala D, Ghimire C, Kushwaha S, Yu Z, Yangyuoru PM, Mao H. Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Res 2013; 41:3915-23. [PMID: 23396442 PMCID: PMC3616730 DOI: 10.1093/nar/gkt038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5'-(TTAGGG)4TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured, it was compared with PDB structures to identify the best-matching G-quadruplex conformation. This method is well-suited to identify biomolecular structures in complex settings not amenable to conventional approaches, such as in a solution with mixed species or at physiologically significant concentrations. With this approach, we found that parallel G-quadruplex coexists with non-parallel species (1:1 ratio) in crowded buffers with dehydrating cosolutes [40% w/v dimethyl sulfoxide (DMSO) or acetonitrile (ACN)]. In crowded solutions with steric cosolutes [40% w/v bovine serum albumin (BSA)], the parallel G-quadruplex constitutes only 10% of the population. This difference unequivocally supports the notion that dehydration promotes the formation of parallel G-quadruplexes. Compared with DNA hairpins that have decreased unfolding forces in crowded (9 pN) versus diluted (15 pN) buffers, those of G-quadruplexes remain the same (20 pN). Such a result implies that in a cellular environment, DNA G-quadruplexes, instead of hairpins, can stop DNA/RNA polymerases with stall forces often <20 pN.
Collapse
Affiliation(s)
- Soma Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Koirala D, Ghimire C, Bohrer C, Sannohe Y, Sugiyama H, Mao H. Long-loop G-quadruplexes are misfolded population minorities with fast transition kinetics in human telomeric sequences. J Am Chem Soc 2013; 135:2235-41. [PMID: 23327686 DOI: 10.1021/ja309668t] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-stranded guanine (G)-rich sequences at the 3' end of human telomeres provide ample opportunities for physiologically relevant structures, such as G-quadruplexes, to form and interconvert. Population equilibrium in this long sequence is expected to be intricate and beyond the resolution of ensemble-average techniques, such as circular dichroism, NMR, or X-ray crystallography. By combining a force-jump method at the single-molecular level and a statistical population deconvolution at the sub-nanometer resolution, we reveal a complex population network with unprecedented transition dynamics in human telomeric sequences that contain four to eight TTAGGG repeats. Our kinetic data firmly establish that G-triplexes are intermediates to G-quadruplexes while long-loop G-quadruplexes are misfolded population minorities whose formation and disassembly are faster than G-triplexes or regular G-quadruplexes. The existence of misfolded DNA supports the emerging view that structural and kinetic complexities of DNA can rival those of RNA or proteins. While G-quadruplexes are the most prevalent species in all the sequences studied, the abundance of a misfolded G-quadruplex in a particular telomeric sequence decreases with an increase in the loop length or the number of long-loops in the structure. These population patterns support the prediction that in the full-length 3' overhang of human telomeres, G-quadruplexes with shortest TTA loops would be the most dominant species, which justifies the modeling role of regular G-quadruplexes in the investigation of telomeric structures.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | | | | | | | | | | |
Collapse
|