1
|
Oliveira GD, dos S. Bury P, Huang F, Li Y, Araújo ND, Zhou J, Sun Y, Leeper FJ, Leadlay PF, Dias MVB. Structural and Functional Basis of GenB2 Isomerase Activity from Gentamicin Biosynthesis. ACS Chem Biol 2024; 19:2002-2011. [PMID: 39207862 PMCID: PMC11420954 DOI: 10.1021/acschembio.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Aminoglycosides are essential antibiotics used to treat severe infections caused mainly by Gram-negative bacteria. Gentamicin is an aminoglycoside and, despite its toxicity, is clinically used to treat several pulmonary and urinary infections. The commercial form of gentamicin is a mixture of five compounds with minor differences in the methylation of one of their aminosugars. In the case of two compounds, gentamicin C2 and C2a, the only difference is the stereochemistry of the methyl group attached to C-6'. GenB2 is the enzyme responsible for this epimerization and is one of the four PLP-dependent enzymes encoded by the gentamicin biosynthetic gene cluster. Herein, we have determined the structure of GenB2 in its holo form in complex with PMP and also in the ternary complex with gentamicin X2 and G418, two substrate analogues. Based on the structural analysis, we were able to identify the structural basis for the catalytic mechanism of this enzyme, which was also studied by site-directed mutagenesis. Unprecedently, GenB2 is a PLP-dependent enzyme from fold I, which is able to catalyze an epimerization but with a mechanism distinct from that of fold III PLP-dependent epimerases using a cysteine residue near the N-terminus. The substitution of this cysteine residue for serine or alanine completely abolished the epimerase function of the enzyme, confirming its involvement. This study not only contributes to the understanding of the enzymology of gentamicin biosynthesis but also provides valuable details for exploring the enzymatic production of new aminoglycoside derivatives.
Collapse
Affiliation(s)
- Gabriel
S. de Oliveira
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Priscila dos S. Bury
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fanglu Huang
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Yuan Li
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry
of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Natália
C. de Araújo
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jiahai Zhou
- State
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS, Shenzhen 518055, China
| | - Yuhui Sun
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry
of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Peter F. Leadlay
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Marcio V. B. Dias
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Sato S, Fan PH, Yeh YC, Liu HW. Complete In Vitro Reconstitution of the Apramycin Biosynthetic Pathway Demonstrates the Unusual Incorporation of a β-d-Sugar Nucleotide in the Final Glycosylation Step. J Am Chem Soc 2024; 146:10103-10114. [PMID: 38546392 PMCID: PMC11317085 DOI: 10.1021/jacs.4c01233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-β-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4″ position without requiring prior 6″-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-β-d-glucose or NDP-4"-amino-4"-deoxy-β-d-glucose to form the 8',1″-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-β-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-β-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.
Collapse
|
3
|
Kurosawa S, Okamura H, Yoshida A, Tomita T, Sone Y, Hasebe F, Shinada T, Takikawa H, Kosono S, Nishiyama M. Mechanisms of Sugar Aminotransferase-like Enzymes to Synthesize Stereoisomers of Non-proteinogenic Amino Acids in Natural Product Biosynthesis. ACS Chem Biol 2023; 18:385-395. [PMID: 36669120 DOI: 10.1021/acschembio.2c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.
Collapse
Affiliation(s)
- Sumire Kurosawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Okamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Sone
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihito Hasebe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Shi W, Lu J, Feng C, Gao M, Li A, Liu S, Zhang L, Zhang X, Li Q, Lin H, Lin X, Li K, Zhang H, Hu Y, Wang G, Bao Q, Jiang W. Functional characterization of a novel aminoglycoside phosphotransferase, APH(9)-Ic, and its variant from Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2023; 12:1097561. [PMID: 36699730 PMCID: PMC9868417 DOI: 10.3389/fcimb.2022.1097561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Background The intrinsic resistance mechanism plays an essential role in the bacterial resistance to a variety of the antimicrobials. The aim of this study is to find the chromosome-encoded novel antimicrobial resistance gene in the clinical isolate. Methods The function of the predicted resistance gene was verified by gene cloning and antibiotic susceptibility test. Recombinant protein expression and enzyme kinetic studies were performed to explore the in vivo activity of the enzyme. Expression of the resistance gene exposed to antimicrobial was determined by RT-qPCR. Whole genome sequencing and bioinformatic analysis were applied to analyze the genetic context of the resistance gene. Results The novel aminoglycoside (AG) resistance genes designated aph(9)-Ic and aph(9)-Ic1 confer resistance to spectinomycin, and a recombinant strain harboring aph(9)-Ic (pMD19-T-aph(9)-Ic/DH5α) showed a significantly increased minimum inhibitory concentration (MIC) level against spectinomycin compared with the control strains (DH5α and pMD19-T/DH5α). The result of the kinetic analysis of APH(9)-Ic was consistent with the MIC result for the recombinant pMD19-T-aph(9)-Ic/DH5α, showing the efficient catalytic activity for spectinomycin [kcat/Km ratio = (5.58 ± 0.31) × 104 M-1·s-1]. Whole-genome sequencing demonstrated that the aph(9)-Ic gene was located on the chromosome with a relatively conserved genetic environment, and no mobile genetic element was found in its surrounding region. Among all the function-characterized resistance genes, APH(9)-Ic shares the highest amino acid sequence identity of 33.75% with APH(9)-Ia. Conclusion We characterized a novel AG resistance gene aph(9)-Ic and its variant aph(9)-Ic1 that mediated spectinomycin resistance from S. maltophilia. The identification of the novel AG resistance genes will assist us in elucidating the complexity of resistance mechanisms in microbial populations.
Collapse
Affiliation(s)
- Weina Shi
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangli Wang
- School of Medicine and Health, Lishui University, Lishui, China,*Correspondence: Guangli Wang, ; Qiyu Bao, ; Weiyan Jiang,
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China,*Correspondence: Guangli Wang, ; Qiyu Bao, ; Weiyan Jiang,
| | - Weiyan Jiang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Guangli Wang, ; Qiyu Bao, ; Weiyan Jiang,
| |
Collapse
|
5
|
Li X, Yu F, Wang F, Wang S, Han R, Cheng Y, Zhao M, Sun J, Xue Z. Point mutation of V252 in neomycin C epimerase enlarges substrate-binding pocket and improves neomycin B accumulation in Streptomyces fradiae. BIORESOUR BIOPROCESS 2022; 9:123. [PMID: 38647873 PMCID: PMC10991966 DOI: 10.1186/s40643-022-00613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/09/2022] Open
Abstract
Neomycin, an aminoglycoside antibiotic with broad-spectrum antibacterial resistance, is widely used in pharmaceutical and agricultural fields. However, separation and purification of neomycin B as an active substance from Streptomyces fradiae are complicated. Although NeoN can catalyze conversion of neomycin C to neomycin B, the underlying catalytic mechanism is still unclear. In this study, the genomic information of high-yielding mutant S. fradiae SF-2 was elucidated using whole-genome sequencing. Subsequently, the mechanism of NeoN in catalyzing conversion of neomycin C to neomycin B was resolved based on NeoN-SAM-neomycin C ternary complex. Mutant NeoNV252A showed improved NeoN activity, and the recombinant strain SF-2-NeoNV252A accumulated 16,766.6 U/mL neomycin B, with a decrease in neomycin C ratio from 16.1% to 6.28%, when compared with the parental strain SF-2. In summary, this study analyzed the catalytic mechanism of NeoN, providing significant reference for rational design of NeoN to improve neomycin B production and weaken the proportion of neomycin C.
Collapse
Affiliation(s)
- Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Fei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fang Wang
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Sang Wang
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yihan Cheng
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Junfeng Sun
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| |
Collapse
|
6
|
Crystal structure of BtrK, a decarboxylase involved in the (S)-4-amino-2-hydroxybutyrate (AHBA) formation during butirosin biosynthesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Hoyos P, Perona A, Bavaro T, Berini F, Marinelli F, Terreni M, Hernáiz MJ. Biocatalyzed Synthesis of Glycostructures with Anti-infective Activity. Acc Chem Res 2022; 55:2409-2424. [PMID: 35942874 PMCID: PMC9454102 DOI: 10.1021/acs.accounts.2c00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecules containing carbohydrate moieties play essential roles in fighting a variety of bacterial and viral infections. Consequently, the design of new carbohydrate-containing drugs or vaccines has attracted great attention in recent years as means to target several infectious diseases.Conventional methods to produce these compounds face numerous challenges because their current production technology is based on chemical synthesis, which often requires several steps and uses environmentally unfriendly reactants, contaminant solvents, and inefficient protocols. The search for sustainable processes such as the use of biocatalysts and eco-friendly solvents is of vital importance. Therefore, their use in a variety of reactions leading to the production of pharmaceuticals has increased exponentially in the last years, fueled by recent advances in protein engineering, enzyme directed evolution, combinatorial biosynthesis, immobilization techniques, and flow biocatalysis. In glycochemistry and glycobiology, enzymes belonging to the families of glycosidases, glycosyltransferases (Gtfs), lipases, and, in the case of nucleoside and nucleotide analogues, also nucleoside phosphorylases (NPs) are the preferred choices as catalysts.In this Account, on the basis of our expertise, we will discuss the recent biocatalytic and sustainable approaches that have been employed to synthesize carbohydrate-based drugs, ranging from antiviral nucleosides and nucleotides to antibiotics with antibacterial activity and glycoconjugates such as neoglycoproteins (glycovaccines, GCVs) and glycodendrimers that are considered as very promising tools against viral and bacterial infections.In the first section, we will report the use of NPs and N-deoxyribosyltransferases for the development of transglycosylation processes aimed at the synthesis of nucleoside analogues with antiviral activity. The use of deoxyribonucleoside kinases and hydrolases for the modification of the sugar moiety of nucleosides has been widely investigated.Next, we will describe the results obtained using enzymes for the chemoenzymatic synthesis of glycoconjugates such as GCVs and glycodendrimers with antibacterial and antiviral activity. In this context, the search for efficient enzymatic syntheses represents an excellent strategy to produce structure-defined antigenic or immunogenic oligosaccharide analogues with high purity. Lipases, glycosidases, and Gtfs have been used for their preparation.Interestingly, many authors have proposed the use Gtfs originating from the biosynthesis of natural glycosylated antibiotics such as glycopeptides, macrolides, and aminoglycosides. These have been used in the chemoenzymatic semisynthesis of novel antibiotic derivatives by modification of the sugar moiety linked to their complex scaffold. These contributions will be described in the last section of this review because of their relevance in the fight against the spreading phenomenon of antibiotic resistance. In this context, the pioneering in vivo synthesis of novel derivatives obtained by genetic manipulation of producer strains (combinatorial biosynthesis) will be shortly described as well.All of these strategies provide a useful and environmentally friendly synthetic toolbox. Likewise, the field represents an illustrative example of how biocatalysis can contribute to the sustainable development of complex glycan-based therapies and how problems derived from the integration of natural tools in synthetic pathways can be efficiently tackled to afford high yields and selectivity. The use of enzymatic synthesis is becoming a reality in the pharmaceutical industry and in drug discovery to rapidly afford collections of new antibacterial or antiviral molecules with improved specificity and better metabolic stability.
Collapse
Affiliation(s)
- Pilar Hoyos
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Almudena Perona
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Teodora Bavaro
- Dipartimento
di Scienze del Farmaco, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Francesca Berini
- Dipartimento
di Biotecnologie e Scienze della Vita, Università
degli Studi dell’Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Flavia Marinelli
- Dipartimento
di Biotecnologie e Scienze della Vita, Università
degli Studi dell’Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Dipartimento
di Scienze del Farmaco, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - María J. Hernáiz
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain,
| |
Collapse
|
8
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Tsunoda T, Tanoeyadi S, Proteau PJ, Mahmud T. The chemistry and biology of natural ribomimetics and related compounds. RSC Chem Biol 2022; 3:519-538. [PMID: 35656477 PMCID: PMC9092360 DOI: 10.1039/d2cb00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Natural ribomimetics represent an important group of specialized metabolites with significant biological activities. Many of the activities, e.g., inhibition of seryl-tRNA synthetases, glycosidases, or ribosomes, are manifestations of their structural resemblance to ribose or related sugars, which play roles in the structural, physiological, and/or reproductive functions of living organisms. Recent studies on the biosynthesis and biological activities of some natural ribomimetics have expanded our understanding on how they are made in nature and why they have great potential as pharmaceutically relevant products. This review article highlights the discovery, biological activities, biosynthesis, and development of this intriguing class of natural products.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Philip J Proteau
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
10
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Yu F, Zhang M, Sun J, Wang F, Li X, Liu Y, Wang Z, Zhao X, Li J, Chen J, Du G, Xue Z. Improved Neomycin Sulfate Potency in Streptomyces fradiae Using Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis and Fermentation Medium Optimization. Microorganisms 2022; 10:microorganisms10010094. [PMID: 35056543 PMCID: PMC8780280 DOI: 10.3390/microorganisms10010094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022] Open
Abstract
To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 μg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Min Zhang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Junfeng Sun
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Fang Wang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Xiangfei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
| | - Yan Liu
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Zhou Wang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (G.D.); (Z.X.)
| | - Zhenglian Xue
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
- Correspondence: (G.D.); (Z.X.)
| |
Collapse
|
12
|
Li S, Santos Bury PD, Huang F, Guo J, Sun G, Reva A, Huang C, Jian X, Li Y, Zhou J, Deng Z, Leeper FJ, Leadlay PF, Dias MVB, Sun Y. Mechanistic Insights into Dideoxygenation in Gentamicin Biosynthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Priscila Dos Santos Bury
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Junhong Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Anna Reva
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Chuan Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyun Jian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Engineering of Streptoalloteichus tenebrarius 2444 for Sustainable Production of Tobramycin. Molecules 2021; 26:molecules26144343. [PMID: 34299618 PMCID: PMC8304502 DOI: 10.3390/molecules26144343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tobramycin is a broad-spectrum aminoglycoside antibiotic agent. The compound is obtained from the base-catalyzed hydrolysis of carbamoyltobramycin (CTB), which is naturally produced by the actinomycete Streptoalloteichus tenebrarius. However, the strain uses the same precursors to synthesize several structurally related aminoglycosides. Consequently, the production yields of tobramycin are low, and the compound’s purification is very challenging, costly, and time-consuming. In this study, the production of the main undesired product, apramycin, in the industrial isolate Streptoalloteichus tenebrarius 2444 was decreased by applying the fermentation media M10 and M11, which contained high concentrations of starch and dextrin. Furthermore, the strain was genetically engineered by the inactivation of the aprK gene (∆aprK), resulting in the abolishment of apramycin biosynthesis. In the next step of strain development, an additional copy of the tobramycin biosynthetic gene cluster (BGC) was introduced into the ∆aprK mutant. Fermentation by the engineered strain (∆aprK_1-17L) in M11 medium resulted in a 3- to 4-fold higher production than fermentation by the precursor strain (∆aprK). The phenotypic stability of the mutant without selection pressure was validated. The use of the engineered S. tenebrarius 2444 facilitates a step-saving, efficient, and, thus, more sustainable production of the valuable compound tobramycin on an industrial scale.
Collapse
|
14
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
15
|
Kudo F, Mori A, Koide M, Yajima R, Takeishi R, Miyanaga A, Eguchi T. One-pot enzymatic synthesis of 2-deoxy-scyllo-inosose from d-glucose and polyphosphate. Biosci Biotechnol Biochem 2021; 85:108-114. [PMID: 33577648 DOI: 10.1093/bbb/zbaa025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 11/14/2022]
Abstract
2-Deoxy-scyllo-inosose (2DOI, [2S,3R,4S,5R]-2,3,4,5-tetrahydroxycyclohexan-1-one) is a biosynthetic intermediate of 2-deoxystreptamine-containing aminoglycoside antibiotics, including butirosin, kanamycin, and neomycin. In producer microorganisms, 2DOI is constructed from d-glucose 6-phosphate (G6P) by 2-deoxy-scyllo-inosose synthase (DOIS) with the oxidized form of nicotinamide adenine dinucleotide (NAD+). 2DOI is also known as a sustainable biomaterial for production of aromatic compounds and a chiral cyclohexane synthon. In this study, a one-pot enzymatic synthesis of 2DOI from d-glucose and polyphosphate was investigated. First, 3 polyphosphate glucokinases (PPGKs) were examined to produce G6P from d-glucose and polyphosphate. A PPGK derived from Corynebacterium glutamicum (cgPPGK) was found to be suitable for G6P production under ordinary enzymatic conditions. Next, 7 DOISs were examined for the one-pot enzymatic reaction. As a result, cgPPGK and BtrC, the latter of which is a DOIS derived from the butirosin producer Bacillus circulans, achieved nearly full conversion of d-glucose to 2DOI in the presence of polyphosphate.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ayaka Mori
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Mai Koide
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ryo Yajima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ryohei Takeishi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| |
Collapse
|
16
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
17
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
18
|
Mrugała B, Miłaczewska A, Porebski PJ, Niedzialkowska E, Guzik M, Minor W, Borowski T. A study on the structure, mechanism, and biochemistry of kanamycin B dioxygenase (KanJ)-an enzyme with a broad range of substrates. FEBS J 2020; 288:1366-1386. [PMID: 32592631 DOI: 10.1111/febs.15462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2' position of kanamycin B is transformed into a keto group upon release of ammonia. Here, we present for the first time, structural models of KanJ with several ligands, which along with the results of ITC binding assays and HPLC activity tests explain substrate specificity of the enzyme. The large size of the binding pocket suggests that KanJ can accept a broad range of substrates, which was confirmed by activity tests. Specificity of the enzyme with respect to its substrate is determined by the hydrogen bond interactions between the methylamino group of the antibiotic and highly conserved Asp134 and Cys150 as well as between hydroxyl groups of the substrate and Asn120 and Gln80. Upon antibiotic binding, the C terminus loop is significantly rearranged and Gln80 and Asn120, which are directly involved in substrate recognition, change their conformations. Based on reaction energy profiles obtained by density functional theory (DFT) simulations, we propose a mechanism of ketone formation involving the reactive FeIV = O and proceeding either via OH rebound, which yields a hemiaminal intermediate or by abstraction of two hydrogen atoms, which leads to an imine species. At acidic pH, the latter involves a lower barrier than the OH rebound, whereas at basic pH, the barrier leading to an imine vanishes completely. DATABASES: Structural data are available in PDB database under the accession numbers: 6S0R, 6S0T, 6S0U, 6S0W, 6S0V, 6S0S. Diffraction images are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at http://proteindiffraction.org under DOIs: 10.18430/m36s0t, 10.18430/m36s0u, 10.18430/m36s0r, 10.18430/m36s0s, 10.18430/m36s0v, 10.18430/m36s0w. A data set collection of computational results is available in the Mendeley Data database under DOI: 10.17632/sbyzssjmp3.1 and in the ioChem-BD database under DOI: 10.19061/iochem-bd-4-18.
Collapse
Affiliation(s)
- Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Miłaczewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Przemyslaw Jerzy Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
19
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy. Proc Natl Acad Sci U S A 2020; 117:8850-8858. [PMID: 32265283 PMCID: PMC7183216 DOI: 10.1073/pnas.1918759117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nonribosomal peptides (NRPs) are a vast class of natural products and an important source of therapeutics. Typically, these secondary metabolites are assembled by NRP synthetases (NRPSs) that function on substrates covalently linked to the enzyme by a thioester, in a process known as thiotemplated biosynthesis. Although NRPS-independent assembly pathways are known, all are nonthiotemplated. Here we report an NRPS-independent yet thiotemplated pathway for NRP biosynthesis and demonstrate that members of the ATP-grasp and cysteine protease families form the β-peptide backbone of an antibiotic. Armed with this knowledge, we provide genomic evidence that this noncanonical assembly pathway is widespread in bacteria. Our results will inspire future genome mining efforts for the discovery of potential therapeutics that otherwise would be overlooked. Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.
Collapse
|
21
|
Kudo F, Kitayama Y, Miyanaga A, Hirayama A, Eguchi T. Biochemical and Structural Analysis of a Dehydrogenase, KanD2, and an Aminotransferase, KanS2, That Are Responsible for the Construction of the Kanosamine Moiety in Kanamycin Biosynthesis. Biochemistry 2020; 59:1470-1473. [DOI: 10.1021/acs.biochem.0c00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yukinobu Kitayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
22
|
Mahi-Birjand M, Yaghoubi S, Abdollahpour-Alitappeh M, Keshtkaran Z, Bagheri N, Pirouzi A, Khatami M, Sineh Sepehr K, Peymani P, Karimzadeh I. Protective effects of pharmacological agents against aminoglycoside-induced nephrotoxicity: A systematic review. Expert Opin Drug Saf 2020; 19:167-186. [PMID: 31914328 DOI: 10.1080/14740338.2020.1712357] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Aminoglycosides have been long used for antibacterial treatment and are still commonly used in clinical practice. Despite their extensive application and positive effects, drug-related toxicity is considered as the main obstacle for aminoglycosides. Aminoglycosides induce nephrotoxicity through the endocytosis and accumulation of the antibiotics in the epithelial cells of proximal tubule. Most importantly, however, a number of pharmacological agents were demonstrated to have protective activities against nephrotoxicity in experimental animals.Areas covered: In the present systematic review, the authors provide and discuss the mechanisms and epidemiological features of aminoglycoside-induced nephrotoxicity, and focus mainly on recent discoveries and key features of pharmacological interventions. In total, 39 articles were included in this review.Expert opinion: The majority of studies investigated gentamicin-induced nephrotoxicity in animal models. Antioxidants, chemicals, synthetic drugs, hormones, vitamins, and minerals showed potential values to prevent gentamicin-induced nephrotoxicity. Indicators used to evaluate the effectiveness of nephroprotection included antioxidative indexes, inflammatory responses, and apoptotic markers. Among the nephroprotective agents studied, herbs and natural antioxidant agents showed excellent potential to provide a protective strategy against gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Motahareh Mahi-Birjand
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Zahra Keshtkaran
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Peymani
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich-University of Zurich, Switzerland.,Health Policy Research Center, Institute of Heath, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Ban YH, Song MC, Park JW, Yoon YJ. Minor components of aminoglycosides: recent advances in their biosynthesis and therapeutic potential. Nat Prod Rep 2020; 37:301-311. [DOI: 10.1039/c9np00041k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Highlight covers the recent advances in the biosynthetic pathways of aminoglycosides including their minor components, together with the therapeutic potential for minor aminoglycoside components and semi-synthetic aminoglycosides.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Je Won Park
- School of Biosystems and Biomedical Sciences
- Korea University
- Seoul 02841
- Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| |
Collapse
|
24
|
Chang Y, Chai B, Ding Y, He M, Zheng L, Teng Y, Deng Z, Yu Y, Liu T. Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS. Metab Eng Commun 2019; 9:e00096. [PMID: 31720212 PMCID: PMC6838515 DOI: 10.1016/j.mec.2019.e00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. Two missing genes in the biosynthetic pathway of gentamicin B were found. CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora. Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain.
Collapse
Affiliation(s)
- Yingying Chang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Baozhong Chai
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Yunkun Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Min He
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Linghui Zheng
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Yun Teng
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| |
Collapse
|
25
|
Gregory K, Salvador LA, Akbar S, Adaikpoh BI, Stevens DC. Survey of Biosynthetic Gene Clusters from Sequenced Myxobacteria Reveals Unexplored Biosynthetic Potential. Microorganisms 2019; 7:E181. [PMID: 31238501 PMCID: PMC6616573 DOI: 10.3390/microorganisms7060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023] Open
Abstract
Coinciding with the increase in sequenced bacteria, mining of bacterial genomes for biosynthetic gene clusters (BGCs) has become a critical component of natural product discovery. The order Myxococcales, a reputable source of biologically active secondary metabolites, spans three suborders which all include natural product producing representatives. Utilizing the BiG-SCAPE-CORASON platform to generate a sequence similarity network that contains 994 BGCs from 36 sequenced myxobacteria deposited in the antiSMASH database, a total of 843 BGCs with lower than 75% similarity scores to characterized clusters within the MIBiG database are presented. This survey provides the biosynthetic diversity of these BGCs and an assessment of the predicted chemical space yet to be discovered. Considering the mere snapshot of myxobacteria included in this analysis, these untapped BGCs exemplify the potential for natural product discovery from myxobacteria.
Collapse
Affiliation(s)
- Katherine Gregory
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Laura A Salvador
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Shukria Akbar
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Barbara I Adaikpoh
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - D Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
26
|
An Aminoglycoside Antibacterial Substance, S-137-R, Produced by Newly Isolated Bacillus velezensis Strain RP137 from the Persian Gulf. Curr Microbiol 2019; 76:1028-1037. [PMID: 31187206 DOI: 10.1007/s00284-019-01715-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Given antibiotic resistance in pathogens, finding antibiotics from new sources is always a topic of interest to scientists. In the present study, among various isolates from the Persian Gulf coastal area, the strain RP137 was selected as producer of antibacterial compound. Morphological and biochemical studies along with 16S rDNA sequencing showed that strain RP137 belongs to Bacillus genus and was tentatively named Bacillus velezensis strain RP137. The effect of various carbon and nitrogen sources on optimizing the production of antibacterial compound showed that the low-cost rice starch and potassium nitrate supply to the strain RP137 caused producing of 86.0 ± 8.7 µg/mL extract having the antibacterial activity. The fractionation of the primary methanol extract in different solvents followed by reversed-phase HPLC obtained a pure antibacterial-active sample, S-137-R. Structural analysis of the purified S-137-R with the help of FTIR, HR-MS, 1H-NMR, and 13C-NMR showed that the S-137-R compound is classified as aminoglycoside. Minimum inhibition concentration (MIC) of the pure compound for Gram-positive bacteria, Staphylococcus aureus and methicillin resistant Staphylococcus aureus, showed an average antibacterial effect of about 80 µg/mL and 150 µg/mL, respectively and for Pseudomonas aeruginosa (100 µg/mL), while having very little toxic effect on E. coli. Moreover, low cytotoxicity effect of the S-137-R on cancerous and normal cells as well as the low intensity of the hemolysis of red blood cells in higher concentrations of S-137-R make it an ideal candidate for further structure-activity relationship assessments towards its medical applications.
Collapse
|
27
|
Yakovleva EP, Kolodyaznaya VA, Boikova IV, Belakhov VV. Influence of Aryl-Substituted Xylose Derivatives on Fermentation of Antifungal Antibiotic Imbricin. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218130017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Hirayama A, Chu J, Goto E, Kudo F, Eguchi T. NAD+
-Dependent Dehydrogenase PctP and Pyridoxal 5′-Phosphate Dependent Aminotransferase PctC Catalyze the First Postglycosylation Modification of the Sugar Intermediate in Pactamycin Biosynthesis. Chembiochem 2017; 19:126-130. [DOI: 10.1002/cbic.201700483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akane Hirayama
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jinmiao Chu
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ena Goto
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
29
|
Zachman-Brockmeyer TR, Thoden JB, Holden HM. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci 2017; 26:1886-1892. [PMID: 28685903 DOI: 10.1002/pro.3221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/11/2022]
Abstract
Aminoglycoside antibiotics represent a classical group of antimicrobials first discovered in the 1940s. Due to their ototoxic and nephrotoxic side effects, they are typically only used against Gram negative bacteria which have become resistant to other therapeutics. One family of aminoglycosides includes such compounds as butirosin, ribostamycin, neomycin, and kanamycin, amongst others. The common theme in these antibiotics is that they are constructed around a chemically stable aminocyclitol unit referred to as 2-deoxystreptamine (2-DOS). Four enzymes are required for the in vivo production of 2-DOS. Here, we report the structure of RbmB from Streptomyces ribosidificus, which is a pyridoxal 5'-phosphate dependent enzyme that catalyzes two of the required steps in 2-DOS formation by functioning on distinct substrates. For this analysis, the structure of the external aldimine form of RbmB with 2-DOS was determined to 2.1 Å resolution. In addition, the structure of a similar enzyme, BtrR from Bacillus circulans, was also determined to 2.1 Å resolution in the same external aldimine form. These two structures represent the first detailed molecular descriptions of the active sites for those aminotransferases involved in 2-DOS production. Given the fact that the 2-DOS unit is widespread amongst aminoglycoside antibiotics, the data presented herein provide new molecular insight into the biosynthesis of these sugar-based drugs.
Collapse
Affiliation(s)
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
30
|
Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol 2017; 134:56-73. [DOI: 10.1016/j.bcp.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
31
|
Abstract
Despite their inherent toxicity and the global spread of bacterial resistance, aminoglycosides (AGs), an old class of microbial drugs, remain a valuable component of the antibiotic arsenal. Recent studies have continued to reveal the fascinating biochemistry of AG biosynthesis and the rich potential in their pathway engineering. In particular, parallel pathways have been shown to be common and widespread in AG biosynthesis, highlighting nature’s ingenuity in accessing diverse natural products from a limited set of genes. In this review, we discuss the parallel biosynthetic pathways of three representative AG antibiotics—kanamycin, gentamicin, and apramycin—as well as future directions towards the discovery and development of novel AGs.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| |
Collapse
|
32
|
Park JW, Ban YH, Nam SJ, Cha SS, Yoon YJ. Biosynthetic pathways of aminoglycosides and their engineering. Curr Opin Biotechnol 2017; 48:33-41. [PMID: 28365471 DOI: 10.1016/j.copbio.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Despite decades long clinical usage, aminoglycosides still remain a valuable pharmaceutical source for fighting Gram-negative bacterial pathogens, and their newly identified bioactivities are also renewing interest in this old class of antibiotics. As Nature's gift, some aminoglycosides possess natural defensive structural elements that can circumvent drug resistance mechanisms. Thus, a detailed understanding of aminoglycoside biosynthesis will enable us to apply Nature's biosynthetic strategy towards expanding structural diversity in order to produce novel and more robust aminoglycoside analogs. The engineered biosynthesis of novel aminoglycosides is required not only to develop effective therapeutics against the emerging 'superbugs' but also to reinvigorate antibiotic lead discovery in readiness for the emerging post-antibiotic era.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Hee Ban
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
33
|
Ravi A, Hassan SZ, Vanikrishna AN, Sureshan KM. Regioselective SN2 reactions for rapid syntheses of azido-inositols by one-pot sequence-specific nucleophilysis. Chem Commun (Camb) 2017; 53:3971-3973. [DOI: 10.1039/c7cc01219e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sequential nucleophilysis of myo-inositol-disulfonate provides easy access to azido-inositols.
Collapse
Affiliation(s)
- Arthi Ravi
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram-695016
- India
| | - Syed Zahid Hassan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram-695016
- India
| | - Ajithkumar N. Vanikrishna
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram-695016
- India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram-695016
- India
| |
Collapse
|
34
|
Kudo F, Tsunoda T, Takashima M, Eguchi T. Five-Membered Cyclitol Phosphate Formation by a myo-Inositol Phosphate Synthase Orthologue in the Biosynthesis of the Carbocyclic Nucleoside Antibiotic Aristeromycin. Chembiochem 2016; 17:2143-2148. [PMID: 27577857 DOI: 10.1002/cbic.201600348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 12/21/2022]
Abstract
Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome-mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo-inositol-1-phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five-membered cyclitol phosphate from d-fructose 6-phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, 152-8551 (, Japan)
| | - Takeshi Tsunoda
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, 152-8551 (, Japan)
| | - Makoto Takashima
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, 152-8551 (, Japan)
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, 152-8551 (, Japan)
| |
Collapse
|
35
|
Kudo F, Tokumitsu T, Eguchi T. Substrate specificity of radical S-adenosyl-l-methionine dehydratase AprD4 and its partner reductase AprD3 in the C3'-deoxygenation of aminoglycoside antibiotics. J Antibiot (Tokyo) 2016; 70:423-428. [PMID: 27599765 DOI: 10.1038/ja.2016.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/02/2023]
Abstract
A radical S-adenosyl-l-methionine dehydratase AprD4 and an NADPH-dependent reductase AprD3 are responsible for the C3'-deoxygenation of pseudodisaccharide paromamine in the biosynthesis of apramycin. These enzymes are involved in the construction of the characteristic structural motif that is not modified by 3'-phosphotransferase in aminoglycoside-resistant bacterial strains. AprD4 catalyzes the C3'-dehydration of paromamine via a radical-mediated reaction mechanism to give 4'-oxolividamine, which is then reduced by AprD3 with NADPH to afford lividamine. In the present study, the substrate specificity of this unique combination of enzymes has been investigated. AprD4 was found to recognize paromamine, neamine, kanamycin C, and kanamycin B to afford 5'-deoxyadenosine as one of products during the C3'-dehydration of aminoglycosides, but not 2'-N-acetylparomamine and paromomycin. Only paromamine and kanamycin C were converted to the corresponding C3'-deoxygenated compounds by AprD4 and AprD3. AprD3 recognizes the 4'-oxolividamine moiety, including the pseudotrisaccharide kanamycin C, and seems to reject the amino group at C6' of neamine and kanamycin B. Chirally deuterium-labeled NADPH was used to identify that that AprD3 transfers the pro-S hydrogen atom of NADPH when reducing 4'-oxolividamine to give lividamine.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylene moiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-R-D-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistry and biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties, especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared in the search for improved biological activities. The aim of this review is to give coverage on the progress made in two important aspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including the extensively studied carbapyranoses as well as the much less studied carbafuranoses.
Collapse
|
37
|
Mingeot-Leclercq MP, Décout JL. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00503e] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Membrane anionic lipids as attractive targets in the design of amphiphilic antibacterial drugs active against resistant bacteria: molecular foundations and examples.
Collapse
Affiliation(s)
- Marie-Paule Mingeot-Leclercq
- Louvain Drug Research Institute
- Université catholique de Louvain
- Unité de Pharmacologie Cellulaire et Moléculaire
- Brussels
- Belgium
| | - Jean-Luc Décout
- Département de Pharmacochimie Moléculaire
- Université Grenoble Alpes/CNRS
- UMR 5063
- ICMG FR 2607
- F-38041 Grenoble
| |
Collapse
|