1
|
Shibuya M, Yuruka S, Yamamoto Y. Generation of Bis(pentafluorophenyl)boron Enolates from Alkynes and Their Catalyst-Free Alkyne Coupling. Angew Chem Int Ed Engl 2024:e202417910. [PMID: 39487096 DOI: 10.1002/anie.202417910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Carbon-carbon bond forming reactions are powerful synthetic tools for constructing organic molecular frameworks. In this study, strongly Lewis acidic bis(pentafluorophenyl)boron enolates were generated from alkynes through oxygen transfer from 2,6-dibromopyridine N-oxide using tris(pentafluorophenyl)borane [B(C6F5)3]. Boron enolates were highly reactive owing to the strong Lewis acidity of the boron centers, and thus immediately coupled with alkynes. N-Ethynylphthalimide reacted as an alkyne with 2,6-dibromopyridine N-oxide and B(C6F5)3 to form a semi-stable bis(pentafluorophenyl)boron enolate through the coordination of the carbonyl group to the boron center. This enolate underwent coupling with another alkyne.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Souta Yuruka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Tian H, Lee W, Li Y, Dweck MJ, Mendoza A, Harran PG, Houk KN. Origin of Octafluorocyclopentene Polyelectrophilicity. J Am Chem Soc 2024; 146:5375-5382. [PMID: 38354320 DOI: 10.1021/jacs.3c12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Octafluorocyclopentene (OFCP) has found utility as a polyelectrophile in substitution cascades that form complex macrocyclic compounds. The Harran group synthesis of macrocyclic polypeptides depends on OFCP as a linker, combining with four different nucleophilic units of a polypeptide. We report a computational investigation of the origins of OFCP reactivity and a rationale for controlled mono-, di-, tri-, and tetrasubstitution of fluoride ions by heteroatomic nucleophiles. The roles of inductive, negative hyperconjugative, and resonance electron-donation by fluoride substituents are explored for the reaction of OFCP, less-fluorinated analogues, and common electrophilic alkenes with several different nucleophiles.
Collapse
Affiliation(s)
- Haowen Tian
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - William Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yuli Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Morris J Dweck
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Angel Mendoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
4
|
Li L, Li J. Solvent- and Catalyst-Free Synthesis of gem-Difluorinated and Polyfluoroarylated Compounds with Nucleophilic or Electrophilic Fluorine-Containing Reaction Partners, Respectively. Molecules 2024; 29:697. [PMID: 38338440 PMCID: PMC10856203 DOI: 10.3390/molecules29030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
A novel, efficient and environmentally friendly solvent-free and catalyst-free approach for the synthesis of structurally diverse gem-difluorinated and polyfluoroarylated derivatives with readily available nucleophilic and electrophilic fluorine-containing reaction partners, difluoroenoxysilane and pentafluorobenzaldehyde, is described. This neat protocol is induced by the direct hydrogen-bond interactions between fluorinated and non-fluorinated reactants without the use of heavy metal catalysts or volatile organic solvents and with no need for column chromatographic separation for most cases.
Collapse
Affiliation(s)
- Lingheng Li
- Department of Photography, Tianjin University of Technology, Tianjin 300384, China
| | - Jinshan Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Zhou Y, Hu D, Zhang Y, Cen Q, Dong ZB, Zhang JQ, Ren H. Transition-Metal-Free Synthesis of Polyfluoro-Polyarylmethanes via Direct Cross-Coupling of Polyfluoroarenes and Benzyl Chlorides. Chemistry 2022; 29:e202203427. [PMID: 36583527 DOI: 10.1002/chem.202203427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The transition-metal-free direct cross-coupling between polyfluoroarenes and benzyl chlorides is reported. In this strategy, a variety of polyfluoro di-, tri- and tetra-arylmethanes was efficiently prepared with good to excellent yields in the presence of Mg turnings via a one-pot procedure. Significantly, this method provides a general approach for the synthesis of polyfluorinated polyarylmethanes.
Collapse
Affiliation(s)
- Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China.,School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Yuting Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Qiyou Cen
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, P. R. China.,School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
6
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022; 61:e202213429. [DOI: 10.1002/anie.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
8
|
YORIMITSU H, PERRY GJP. Sulfonium-aided coupling of aromatic rings via sigmatropic rearrangement. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:190-205. [PMID: 35400695 PMCID: PMC9071926 DOI: 10.2183/pjab.98.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Biaryl synthesis continues to occupy a central role in chemical synthesis. From blockbuster drug molecules to organic electronics, biaryls present numerous possibilities and new applications continue to emerge. Transition-metal-catalyzed coupling reactions represent the gold standard for biaryl synthesis and the mechanistic steps, such as reductive elimination, are well established. Developing routes that exploit alternative mechanistic scenarios could give unprecedented biaryl structures and expand the portfolio of biaryl applications. We have developed metal-free C-H/C-H couplings of aryl sulfoxides with phenols to afford 2-hydroxy-2'-sulfanylbiaryls. This cascade strategy consists of an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement. Our method enables the synthesis of intriguing aromatic molecules, including oligoarenes, enantioenriched dihetero[8]helicenes, and polyfluorobiaryls. From our successes in aryl sulfoxide/phenol couplings and a deeper understanding of sigmatropic rearrangements for biaryl synthesis, we have established related methods, such as aryl sulfoxide/aniline and aryl iodane/phenol couplings. Overall, our fundamental interests in underexplored reaction mechanisms have led to various methods for accessing important biaryl architectures.
Collapse
Affiliation(s)
- Hideki YORIMITSU
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gregory J. P. PERRY
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Jia F, Luo J, Zhang B. Computational mechanism investigation of Bi( i)/Bi( iii) redox-catalyzed hydrodefluorination (HDF) of polyfluoroarenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01020h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations reveal details of the redox catalytic mechanism of non-transition-metal bismuth.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Basic Medical Sciences & Forensic medicine, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jiewei Luo
- School of Basic Medical Sciences & Forensic medicine, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Bo Zhang
- School of Basic Medical Sciences & Forensic medicine, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
10
|
Fuchibe K, Mukohara I, Yamada A, Miyazaki D, Takayama R, Ichikawa J. Construction of Thienothiophene and Thienofuran Ring Systems via Ring Expansion of Difluorothiiranes Generated from Dithioesters. Org Lett 2021; 24:169-174. [PMID: 34894700 DOI: 10.1021/acs.orglett.1c03805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of aryl thiophene-2-carbodithioates or thiophene-3-carbodithioates with difluorocarbene generated from BrCF2CO2Li/molecular sieves 4A produced arylsulfanylated 2,2-difluoro-3-thienylthiiranes. In the presence of lithium ion, the thiirane intermediates underwent ring expansion followed by HF elimination, leading to fluorinated thieno[3,2-b]thiophenes or thieno[2,3-b]thiophenes. The reactions of the oxygen analogues, aryl furancarbodithioates, also proceeded to afford the corresponding thieno[3,2-b]furans. Intramolecular fluorine substitution in the produced arylsulfanyl(fluoro)thienofurans allowed for another thiophene ring construction, leading to the synthesis of fused pentacyclic thienothienofurans.
Collapse
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Ibuki Mukohara
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsushi Yamada
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Daisuke Miyazaki
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryo Takayama
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
11
|
Abstract
AbstractThe unique properties of fluorine-containing organic compounds make fluorine substitution attractive for the development of pharmaceuticals and various specialty materials, which have inspired the evolution of diverse C-F bond activation techniques. Although many advances have been made in functionalizations of activated C-F bonds utilizing transition metal complexes, there are fewer approaches available for nonactivated C-F bonds due to the difficulty in oxidative addition of transition metals to the inert C-F bonds. In this regard, using Lewis acid to abstract the fluoride and light/radical initiator to generate the radical intermediate have emerged as powerful tools for activating those inert C-F bonds. Meanwhile, these transition-metal-free processes are greener, economical, and for the pharmaceutical industry, without heavy metal residues. This review provides an overview of recent C-F bond activations and functionalizations under transition-metal-free conditions. The key mechanisms involved are demonstrated and discussed in detail. Finally, a brief discussion on the existing limitations of this field and our perspective are presented.
Collapse
|
12
|
Fang H, He Q, Liu G, Huang Z. Ruthenium-Catalyzed Hydrodefluorination with Silane as the Directing and Reducing Group. Org Lett 2020; 22:9298-9302. [PMID: 33226823 DOI: 10.1021/acs.orglett.0c03530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe herein an efficient and selective Ru-catalyzed intramolecular HDF directed by a silyl group, which is readily installed, and removable and transformable following the HDF reaction. The hydrosilyl group in polyfluoroaryl silane acts not only as the directing group but also as the internal reductant, enabling precise control of the ortho-selectivity and avoiding overdefluorination. Mechanistic studies reveal a plausible catalytic cycle involving a Ru(IV)-aryne intermediate.
Collapse
Affiliation(s)
- Huaquan Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiaoxing He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
13
|
Okamoto K, Nogi K, Yorimitsu H. Regioselective Difunctionalization of 2,6-Difluorophenols Triggered by Sigmatropic Dearomatization. Org Lett 2020; 22:5540-5544. [PMID: 32633533 DOI: 10.1021/acs.orglett.0c01904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regioselective difunctionalization of 2,6-difluorophenols with aryl sulfoxides and nucleophiles has been accomplished. The reaction is composed of (1) Pummerer-based [3,3] sigmatropic dearomatization to generate 2,4-cyclohexadienone, (2) Michael addition of a nucleophile, and (3) liberation of HF for rearomatization. Besides the [3,3] rearrangement, [2,3] sigmatropic rearrangement from sulfonium ylide generated from alkyl sulfoxide promotes the dearomatization, resulting in installation of α-sulfanylalkyl group.
Collapse
Affiliation(s)
- Koichi Okamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Okamoto K, Nogi K, Shimokawa J, Yorimitsu H. C-F Arylation of Polyfluorophenols by Means of Sigmatropic Dearomatization/Defluorination Sequence. Chemistry 2020; 26:5615-5618. [PMID: 32149436 DOI: 10.1002/chem.202001158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 01/23/2023]
Abstract
Selective C-F arylation of polyfluorophenols with aryl sulfoxides has been accomplished by means of a sigmatropic dearomatization/defluorination sequence. This sequence consists of three processes: 1) interrupted Pummerer reaction to form S-O-tethered sulfonium salt; 2) C-C-forming [3,3] sigmatropic rearrangement with dearomatization; and 3) Zn-mediated defluorinative rearomatization. The present biaryl construction provides a facile access to polyfluorinated biaryls that is difficult to synthesize by other methods. The synthetic utility of the strategy is clearly demonstrated by the synthesis of a fluorinated analogue of Maxipost, a potassium channel modulator.
Collapse
Affiliation(s)
- Koichi Okamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jun Shimokawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
15
|
Zhu C, Zhang YF, Liu ZY, Zhou L, Liu H, Feng C. Selective C-F bond carboxylation of gem-difluoroalkenes with CO 2 by photoredox/palladium dual catalysis. Chem Sci 2019; 10:6721-6726. [PMID: 31367327 PMCID: PMC6625485 DOI: 10.1039/c9sc01336a] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
The catalytic C-F bond carboxylation of organofluorines with CO2 gas remains a challenging problem in synthetic chemistry. Here, we describe a selective defluorinative carboxylation of gem-difluoroalkenes through photoredox/palladium dual catalysis. The C-F bond activation is enabled by single electron reduction through photoredox catalysis to generate a fluorovinyl radical, which subsequently participates in an unprecedented palladium-catalyzed carboxylation. This novel C-F functionalization proved applicable to a wide range of substituted gem-difluoroalkenes, providing a rapid access to valuable α-fluoroacrylic acids.
Collapse
Affiliation(s)
- Chuan Zhu
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| | - Yu-Feng Zhang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| | - Ze-Yao Liu
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| | - Lu Zhou
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| | - Haidong Liu
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| | - Chao Feng
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China .
| |
Collapse
|
16
|
Mekni NH. Nucleophilic Vinyl/Allyl, CF3 and CF2α Perfluoroalkyl Groups Substitution and/or E1CB Elimination Reactions of Fluorine Atom(s) in Organofluorinated Compounds. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct substitution and elimination reactions of the fluorine atoms of difluoromethylene CF2α groups of nonspaced perfluoroalkyl chains, CF3 groups are very difficult to achieve. But, they become feasible with fluoro-alkenes, alkynes, imines or carbonyl derivatives, for which vinylic substitution and related carbanion-mediated pathways are available. In this review, we classify the major and unique fluorine substitution/elimination and rearrangement reactions and discuss their contribution to the synthesis of heterocyclic compounds.
Collapse
Affiliation(s)
- Nejib Hussein Mekni
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Munawarah, Saudi Arabia
| |
Collapse
|
17
|
Torres Ò, Pfister N, Braun T, Wittwer P. C-F activation of perfluorophenazine at nickel: selectivity and mechanistic investigations. Dalton Trans 2019; 48:6153-6161. [PMID: 30916690 DOI: 10.1039/c9dt00780f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The reactivity of [Ni(cod)2] towards perfluorophenazine in the presence of phosphines is reported. When PiPr3 and PCy3 are used, an initial κ-(N) coordination of the nickel centre to the nitrogen atom of the perfluorophenazine ring occurs, forming the dark blue complexes [Ni{κ-(N)-C12N2F8}(PiPr3)2] (1) and [Ni{κ-(N)-C12N2F8}(PCy3)2] (2). Complex 1 was structurally characterized by X-ray diffraction analysis. The complexes rearranged by regioselective C-F activation of the perfluorophenazine ring in the 2-position to yield complexes trans-[NiF(2-C12N2F7)(PiPr3)2] (5) and trans-[NiF(2-C12N2F7)(PCy3)2] (6). The structure of 6 was also determined by X-ray diffraction analysis. Kinetic measurements for the decrease of 1 at different temperatures reveal a first order reaction with ΔH‡ = 19 ± 7 kcal mol-1. Initially, small amounts of an intermediate, assigned as [Ni(η2-1,2-C12N2F8)(PiPr3)2] (3), were observed, which exhibits a 1,2-η2 coordination of the perfluorophenazine. DFT calculations on the same transformation were also computed, which suggest that both a phosphine-assisted mechanism and an oxidative addition can be operating reaction pathways. The 1,2-η2 complex [Ni(η2-1,2-C12N2F8)(PEt3)2] (4) was obtained when PEt3 was used as ligand, and an unstable dark red complex trans-[NiF(2-C12N2F7)(PEt3)2] (7) formed rapidly by C-F activation. The reactivity of the perfluorophenazine was compared with those of perfluorodibenzo-p-dioxin. In this case, no prior coordination was observed and the C-F activation took place in a less selective manner forming trans-[NiF(1-C12O2F7)(PiPr3)2] (8) and trans-[NiF(2-C12O2F7)(PiPr3)2] (9), outlining the role of the nitrogen for the selectivity of the process. Treatment of two equivalents of [Ni(cod)2] and four equivalents of PiPr3 with perfluorophenazine afforded a double C-F activation to give [{trans-(PiPr3)2NiF}2(2,7-C12N2F6)] (10).
Collapse
Affiliation(s)
- Òscar Torres
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
García-Valle FM, Tabernero V, Cuenca T, Mosquera MEG, Cano J. Intramolecular C–F Activation in Schiff-Base Alkali Metal Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Francisco M. García-Valle
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871-Alcalá de Henares, Spain
| | - Vanessa Tabernero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871-Alcalá de Henares, Spain
| | - Tomás Cuenca
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871-Alcalá de Henares, Spain
| | - Marta E. G. Mosquera
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871-Alcalá de Henares, Spain
| | - Jesús Cano
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871-Alcalá de Henares, Spain
| |
Collapse
|
19
|
|
20
|
Okamoto K, Hori M, Yanagi T, Murakami K, Nogi K, Yorimitsu H. Sigmatropic Dearomatization/Defluorination Strategy for C−F Transformation: Synthesis of Fluorinated Benzofurans from Polyfluorophenols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Koichi Okamoto
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Mitsuki Hori
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Tomoyuki Yanagi
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Kei Murakami
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Keisuke Nogi
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| |
Collapse
|
21
|
Okamoto K, Hori M, Yanagi T, Murakami K, Nogi K, Yorimitsu H. Sigmatropic Dearomatization/Defluorination Strategy for C−F Transformation: Synthesis of Fluorinated Benzofurans from Polyfluorophenols. Angew Chem Int Ed Engl 2018; 57:14230-14234. [DOI: 10.1002/anie.201809035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Koichi Okamoto
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Mitsuki Hori
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Tomoyuki Yanagi
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Kei Murakami
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Keisuke Nogi
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry; Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| |
Collapse
|
22
|
Erbing E, Sanz-Marco A, Vázquez-Romero A, Malmberg J, Johansson MJ, Gómez-Bengoa E, Martín-Matute B. Base- and Additive-Free Ir-Catalyzed ortho-Iodination of Benzoic Acids: Scope and Mechanistic Investigations. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02987] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elis Erbing
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Amparo Sanz-Marco
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Ana Vázquez-Romero
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Jesper Malmberg
- RIA iMed, Medicinal Chemistry, AstraZeneca R&D, Mölndal 43183, Sweden
| | | | - Enrique Gómez-Bengoa
- Departamento
de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, Donostia−San
Sebastián 20018, Spain
| | - Belén Martín-Matute
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
23
|
Fuchibe K, Imaoka H, Ichikawa J. Synthesis of Pinpoint-Fluorinated Polycyclic Aromatic Hydrocarbons: Benzene Ring Extension Cycle Involving Microwave-Assisted SNAr Reaction. Chem Asian J 2017; 12:2359-2363. [DOI: 10.1002/asia.201700870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| | - Hisanori Imaoka
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
24
|
Liu Q, Ni C, Hu J. China's flourishing synthetic organofluorine chemistry: innovations in the new millennium. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx058] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The new millennium has witnessed the rapid development of synthetic organofluorine chemistry all over the world, and chemists in China have made significant contributions in this field. This review aims to provide a brief introduction to China's primary innovations from 2000 to early 2017, covering fluorination, fluoroalkylation, fluoromethylthiolation, fluoroolefination and polyfluoroarylation, as well as synthesis with fluorinated building blocks. Recent advances in the chemistry of difluorocarbene and the chemistry of carbon–fluorine bond activation are also discussed. As a conclusion, the review ends with some personal perspectives on the future development of China's synthetic organofluorine chemistry.
Collapse
|
25
|
Suzuki N, Fujita T, Amsharov KY, Ichikawa J. Aluminium-mediated aromatic C–F bond activation: regioswitchable construction of benzene-fused triphenylene frameworks. Chem Commun (Camb) 2016; 52:12948-12951. [DOI: 10.1039/c6cc07199f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aluminium-mediated selective synthesis of benzo[f]tetraphenes or benzo[g]chrysenes was achieved via aromatic C–F bond cleavage and regioselective C–C bond formation.
Collapse
Affiliation(s)
- Naoto Suzuki
- Division of Chemistry
- Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Takeshi Fujita
- Division of Chemistry
- Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | | | - Junji Ichikawa
- Division of Chemistry
- Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
26
|
Sanji T, Nose K, Kakinuma J, Iyoda T. Transition-metal-free controlled polymerization of 2-polyfluorophenyl-5-trimethylsilylthiophenes: the substituent impact of fluorine. Polym Chem 2016. [DOI: 10.1039/c6py01831a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free polymerization of a series of 2-polyfluorophenyl-5-trimethylsilylthiophenes promoted by fluoride anions is reported.
Collapse
Affiliation(s)
- Takanobu Sanji
- Iyoda Supra-Integrated Material Project
- Exploratory Research for Advanced Technology (ERATO)
- Japan Science and Technology Agency (JST)
- and Frontier Research Center
- Tokyo Institute of Technology
| | - Keiji Nose
- Iyoda Supra-Integrated Material Project
- Exploratory Research for Advanced Technology (ERATO)
- Japan Science and Technology Agency (JST)
- and Frontier Research Center
- Tokyo Institute of Technology
| | - Junko Kakinuma
- Iyoda Supra-Integrated Material Project
- Exploratory Research for Advanced Technology (ERATO)
- Japan Science and Technology Agency (JST)
- and Frontier Research Center
- Tokyo Institute of Technology
| | - Tomokazu Iyoda
- Iyoda Supra-Integrated Material Project
- Exploratory Research for Advanced Technology (ERATO)
- Japan Science and Technology Agency (JST)
- and Frontier Research Center
- Tokyo Institute of Technology
| |
Collapse
|