1
|
Kumar R, Khanna Y, Kaushik P, Kamal R, Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem Asian J 2023; 18:e202300017. [PMID: 36869415 DOI: 10.1002/asia.202300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The oxidative aminative vicinal difunctionalization of alkenes or related chemical feedstocks has emerged as sustainable and multipurpose strategies that can efficiently construct two -N bonds, and simultaneously prepare the synthetically fascinating molecules and catalysis in organic synthesis that typically required multi-step reactions. This review summarized the impressive breakthroughs on synthetic methodologies (2015-2022) documented especially over inter/intra-molecular vicinal diamination of alkenes with electron-rich or deficient diverse nitrogen sources. These unprecedented strategies predominantly involved iodine-based reagents/catalysts, which resent the interest of organic chemists due to their impressive role as flexible, non-toxic, and environmentally friendly reagents, resulting in a wide variety of synthetically useful organic molecules. Moreover, the information collected also describes the significant role of catalyst, terminal oxidant, substrate scope, synthetic applications, and their unsuccessful results to highlight the limitations. Special emphasis has been given to proposed mechanistic pathways to determine the key factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Yugam Khanna
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Parul Kaushik
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| | - Shiwani Khokhar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| |
Collapse
|
2
|
Lee BJ, Ickes AR, Gupta AK, Ensign SC, Ho TD, Tarasewicz A, Vanable EP, Kortman GD, Hull KL. Synthesis of Unsymmetrical Vicinal Diamines via Directed Hydroamination. Org Lett 2022; 24:5513-5518. [PMID: 35862860 PMCID: PMC9757009 DOI: 10.1021/acs.orglett.2c01911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vicinal diamines are a common motif found in biologically active molecules. The hydroamination of allyl amine derivatives is a powerful approach for the synthesis of substituted 1,2-diamines. Herein, the rhodium-catalyzed hydroamination of primary and secondary allylic amines using diverse amine nucleophiles, including primary, secondary, acyclic, and cyclic aliphatic amines to access a wide range of unsymmetrical vicinal diamines, is presented. The utility of this methodology is further demonstrated through the rapid synthesis of several bioactive molecules and analogs.
Collapse
Affiliation(s)
- Byung Joo Lee
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Austin, TX 78712, United States
| | - Andrew R. Ickes
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61812, United States
| | - Anil K. Gupta
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61812, United States
| | - Seth C. Ensign
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61812, United States
| | - Tam D. Ho
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Austin, TX 78712, United States
| | - Anika Tarasewicz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Austin, TX 78712, United States
| | - Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhust University, 190 Prospect Avenue, Elmhurst, IL 60126, United States
| | - Gregory D. Kortman
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Austin, TX 78712, United States
| | - Kami L. Hull
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Austin, TX 78712, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61812, United States
| |
Collapse
|
3
|
Li Y, Ali A, Dong J, Zhang Y, Shi L, Liu Q, Fu J. Copper-Catalyzed Diamination of Unactivated Alkenes With Electron-Rich Amino Sources. Org Lett 2021; 23:4072-4077. [PMID: 33970646 DOI: 10.1021/acs.orglett.1c01313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic intermolecular diamination of unactivated alkenes with electron-rich amino sources is a challenge. Herein, by employing a directing-group strategy, a copper-catalyzed diamination of unactivated alkenes was realized. Symmetrical diamines were efficiently produced in a highly diastereoselective manner with readily available dialkylamines as amino sources, while a one-pot and two-step operation was necessary to produce the unsymmetrical diamines. These reactions were proposed to proceed through aziridinium intermediates.
Collapse
Affiliation(s)
- Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Arshad Ali
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Junchao Dong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lili Shi
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.,State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
4
|
Kouno M, Kuwamura N, Konno T. Interconversion between square-planar palladium(ii) and octahedral palladium(iv) centres in a sulfur-bridged trinuclear structure. Chem Commun (Camb) 2021; 57:1336-1339. [DOI: 10.1039/d0cc07490j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination of six thiolato groups from two RhIII metalloligands stabilizes an octahedral PdIV centre, which is interconvertible with a square-planar PdII centre retaining the RhPdRh trinuclear structure.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Naoto Kuwamura
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
5
|
Sushmita, Aggarwal T, Kumar S, Verma AK. Exploring the behavior of the NFSI reagent as a nitrogen source. Org Biomol Chem 2020; 18:7056-7073. [PMID: 32909593 DOI: 10.1039/d0ob01429j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The diverse biological activities of nitrogen-containing compounds make the construction of the C-N bond of great importance. As N-fluorobenzenesulfonimide, one of the most abundant chemical feedstock, has a dual behaviour, i.e. as an electrophilic fluorination and amidation source, it attracts the attention of synthetic chemists for exploitation. This review comprehensively summarizes the significant progress of the efficient and mild amidation reactions, with an emphasis on approaches for the generation of nitrogen-centered intermediates, related mechanisms and new synthetic chemistry methods that offer opportunities to overcome obstacles in pharmaceutical applications. In this perspective, we discuss the developments in the amidation reaction using NFSI in the past decade. We discuss the recent progress, challenges and future outcomes in the area of amidation chemistry using commercially available NFSI.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
6
|
Govaerts S, Angelini L, Hampton C, Malet‐Sanz L, Ruffoni A, Leonori D. Photoinduced Olefin Diamination with Alkylamines. Angew Chem Int Ed Engl 2020; 59:15021-15028. [PMID: 32432808 PMCID: PMC7497254 DOI: 10.1002/anie.202005652] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Indexed: 11/07/2022]
Abstract
Vicinal diamines are ubiquitous materials in organic and medicinal chemistry. The direct coupling of olefins and amines would be an ideal approach to construct these motifs. However, alkene diamination remains a long-standing challenge in organic synthesis, especially when using two different amine components. We report a general strategy for the direct and selective assembly of vicinal 1,2-diamines using readily available olefin and amine building blocks. This mild and straightforward approach involves in situ formation and photoinduced activation of N-chloroamines to give aminium radicals that enable efficient alkene aminochlorination. Owing to the ambiphilic nature of the β-chloroamines produced, conversion into tetra-alkyl aziridinium ions was possible, thus enabling diamination by regioselective ring-opening with primary or secondary amines. This strategy streamlines the preparation of vicinal diamines from multistep sequences to a single chemical transformation.
Collapse
Affiliation(s)
- Sebastian Govaerts
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Lucrezia Angelini
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Charlotte Hampton
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Laia Malet‐Sanz
- Eli Lilly and Company LimitedErl Wood ManorWindleshamSurreyGU20 6PHUK
| | - Alessandro Ruffoni
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Daniele Leonori
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
7
|
Govaerts S, Angelini L, Hampton C, Malet‐Sanz L, Ruffoni A, Leonori D. Photoinduced Olefin Diamination with Alkylamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Govaerts
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucrezia Angelini
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Charlotte Hampton
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Laia Malet‐Sanz
- Eli Lilly and Company Limited Erl Wood Manor Windlesham Surrey GU20 6PH UK
| | - Alessandro Ruffoni
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
8
|
Ma YN, Gao Y, Jing Y, Kang J, Zhang J, Chen X. Syntheses of Bromo-N-heterocycles through Dibromohydantoin-Promoted Tandem C–H Amination/Bromination. J Org Chem 2019; 85:2918-2926. [DOI: 10.1021/acs.joc.9b01833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiaxin Kang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
9
|
Li L, Li Y, Zhao Z, Luo H, Ma YN. Facial Syntheses of Bromobenzothiazines via Catalyst-Free Tandem C–H Amination/Bromination in Water. Org Lett 2019; 21:5995-5999. [DOI: 10.1021/acs.orglett.9b02131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lixin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yong Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Zhengguang Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Haotian Luo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yan-Na Ma
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
10
|
Ma YN, Bian Y, Liu X, Zhang J, Chen X. One-Pot Synthesis of Iodo-Dibenzothiazines from 2-Biaryl Sulfides. J Org Chem 2018; 84:450-457. [DOI: 10.1021/acs.joc.8b02729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yajing Bian
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Okamura Y, Sato D, Yoshimura A, Zhdankin VV, Saito A. Iodine(III)‐Mediated/Catalyzed Cycloisomerization–Amination Sequence of
N
‐Propargyl Carboxamides. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700587] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Okamura
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Daisuke Sato
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth, MN 55812 United States
- The Tomsk Polytechnic University Tomsk 634050 Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth, MN 55812 United States
| | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| |
Collapse
|
12
|
Hypervalent Iodine Reagents in High Valent Transition Metal Chemistry. Molecules 2017; 22:molecules22050780. [PMID: 28498333 PMCID: PMC6154742 DOI: 10.3390/molecules22050780] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/12/2023] Open
Abstract
Over the last 20 years, high valent metal complexes have evolved from mere curiosities to being at the forefront of modern catalytic method development. This approach has enabled transformations complimentary to those possible via traditional manifolds, most prominently carbon-heteroatom bond formation. Key to the advancement of this chemistry has been the identification of oxidants that are capable of accessing these high oxidation state complexes. The oxidant has to be both powerful enough to achieve the desired oxidation as well as provide heteroatom ligands for transfer to the metal center; these heteroatoms are often subsequently transferred to the substrate via reductive elimination. Herein we will review the central role that hypervalent iodine reagents have played in this aspect, providing an ideal balance of versatile reactivity, heteroatom ligands, and mild reaction conditions. Furthermore, these reagents are environmentally benign, non-toxic, and relatively inexpensive compared to other inorganic oxidants. We will cover advancements in both catalysis and high valent complex isolation with a key focus on the subtle effects that oxidant choice can have on reaction outcome, as well as limitations of current reagents.
Collapse
|