1
|
A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process. Molecules 2022; 27:molecules27165106. [PMID: 36014344 PMCID: PMC9414898 DOI: 10.3390/molecules27165106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023] Open
Abstract
The hydrogenation of N-(2-ethyl-6-methylphenyl)-1-methoxypropan-2-imine is the largest-scale asymmetric catalytic process for the industrial production of agrochemical (S)-metolachlor. The challenging hydrogenation across the sterically crowded carbon–nitrogen double bond was achieved using a mixture of [IrCl(COD)]2, (R,SFc)-Xyliphos, NBu4I and acetic acid. Acetic acid was critical in achieving excellent productivity and activity. Despite its industrial significance, a mechanism that explains how the sterically hindered bond in the imine is reduced has yet to be proposed. We propose a plausible proton-first, outer-sphere mechanism based on density functional theory calculations that is consistent with the experimentally observed activity and the enantioselectivity of the industrial process. Key findings include transition states involving acetate-assisted dihydrogen splitting, and a hydride transfer from a five-coordinate iridium trihydride directed by a C-H∙∙∙Ir interaction. This article was submitted to a Special Issue in honor of Professor Henri Kagan.
Collapse
|
2
|
Gunasekar R, Goodyear RL, Silvestri IP, Xiao J. Recent Developments in Enantio- and Diastereoselective Hydrogenation of N-Heteroaromatic Compounds. Org Biomol Chem 2022; 20:1794-1827. [DOI: 10.1039/d1ob02331d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective and diastereoselective hydrogenation of N-heteroaromatic compounds is an efficient strategy to access chirally enriched cyclic heterocycles, which often possess highly bio-active properties. This strategy, however, has only been...
Collapse
|
3
|
Shen YH, Esper AM, Ghiviriga I, Abboud KA, Schanze KS, Ehm C, Veige AS. SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Trans 2021; 50:12681-12691. [PMID: 34545891 DOI: 10.1039/d1dt02626g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Combining strain-promoted azide-alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N3, M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N3)(PPh3)] (Au-N3), [W(η3-allyl)(N3)(bpy)(CO)2] (W-N3), and [Re(N3)(bpy)(CO)3] [bpy = 2,2'-bipyridine] (Re-N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N3)(Tp)(PPh3)2] [Tp = tris(pyrazolyl)borate] (Ru-N3), [Pt(N3)(CH3)(PiPr3)2] [iPr = isopropyl] (Pt(II)-N3), and [Pt(N3)(CH3)3]4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N3)(CH3)3(P(CH3)3)2] (Pt(IV)-N3) was successfully predicted.
Collapse
Affiliation(s)
- Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Khalil A Abboud
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Kirk S Schanze
- University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249, USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Genêt J, Phansavath P, Ratovelomanana‐Vidal V. Asymmetric Hydrogenation: Design of Chiral Ligands and Transition Metal Complexes. Synthetic and Industrial Applications. Isr J Chem 2021. [DOI: 10.1002/ijch.202100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jean‐Pierre Genêt
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life & Health Sciences CSB2D Team 75005 Paris France
| | - Phannarath Phansavath
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life & Health Sciences CSB2D Team 75005 Paris France
| | - Virginie Ratovelomanana‐Vidal
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life & Health Sciences CSB2D Team 75005 Paris France
| |
Collapse
|
5
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021; 60:5108-5113. [DOI: 10.1002/anie.202013540] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Barrios-Rivera J, Xu Y, Wills M, Vyas VK. A diversity of recently reported methodology for asymmetric imine reduction. Org Chem Front 2020. [DOI: 10.1039/d0qo00794c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review describes recent developments in enantioselective imine reduction, including related substrates in which a CN bond is the target for reduction, and in situ methods.
Collapse
Affiliation(s)
| | - Yingjian Xu
- GoldenKeys High-tech Materials Co
- Ltd
- Guian New Area
- China
| | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | |
Collapse
|
8
|
Brüning F, Nagae H, Käch D, Mashima K, Togni A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands. Chemistry 2019; 25:10818-10822. [PMID: 31233638 DOI: 10.1002/chem.201902585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/17/2022]
Abstract
The asymmetric hydrogenation of 2,2,2-trifluoroacetophenones and aryl perfluoroalkyl ketones was developed using a unique, well-defined chloride-bridged dinuclear rhodium(III) complex bearing Josiphos-type diphosphine ligands. These complexes were prepared from [RhCl(cod)]2 , Josiphos ligands, and hydrochloric acid. As catalyst precursors, they allow for the efficient and enantioselective synthesis (up to 99 % ee) of chiral secondary alcohols with perfluoroalkyl groups. This system does not require an activating base for the hydrogenation of 2,2,2-trifluoroacetophenones. Additionally, the enantioselective C=O hydrogenations of 2-phenyl-3-(haloacetyl)-indoles, a class of privileged structures in medicinal chemistry, is reported for the first time.
Collapse
Affiliation(s)
- Fabian Brüning
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 5608531, Japan
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 5608531, Japan
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Seo CSG, Morris RH. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00774] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chris S. G. Seo
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| |
Collapse
|
10
|
Xia J, Nie Y, Yang G, Liu Y, Gridnev ID, Zhang W. Ir-Catalyzed Asymmetric Hydrogenation of α-Alkylidene β-Lactams and Cyclobutanones. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jingzhao Xia
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
| | - Yu Nie
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science; Tohoku University, Aramaki 3-6, Aoba-ku; Sendai 9808578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University, 800 Dongchuan Road; Shanghai 200240 China
| |
Collapse
|
11
|
Wang Y, Liu Y, Li K, Yang G, Zhang W. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Piperazin-2-ones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanzhao Wang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Yuanyuan Liu
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Kun Li
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|