1
|
Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct C-H Heteroarylation of (Hetero)arenes. Chem Asian J 2023; 18:e202300628. [PMID: 37602812 DOI: 10.1002/asia.202300628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5 mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
Collapse
Affiliation(s)
- Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
2
|
Liu K, Ding D, Xing W, Liu L, Zhang S, Meng Q, Chen T. Palladium-catalysed deaminative/decarboxylative cross-coupling of organoammonium salts with carboxylic acids. Org Biomol Chem 2023; 21:1384-1388. [PMID: 36652381 DOI: 10.1039/d2ob02251f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A palladium-catalysed carbon-carbon bond-forming reaction via deaminative/decarboxylative cross-coupling of organoammonium salts with carboxylic acids was developed. Under the reaction conditions, polyfluoroaromatic carboxylic acids, propiolic acids and α-cyano benzyl carboxylic acid reacted smoothly with benzyl ammonium salts to produce the corresponding carbon-carbon coupling products in good-to-excellent yields.
Collapse
Affiliation(s)
- Kuan Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Dexiang Ding
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Weitao Xing
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shuo Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Qi Meng
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Le Pham NS, Kwon Y, Shin H, Sohn JH. Copper-promoted dehydrosulfurative carbon-nitrogen cross-coupling with concomitant aromatization for synthesis of 2-aminopyrimidines. RSC Adv 2022; 13:172-177. [PMID: 36605669 PMCID: PMC9764426 DOI: 10.1039/d2ra05180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Copper-promoted dehydrosulfurative C-N cross-coupling of 3,4-dihydropyrimidin-1H-2-thione with amine accompanied by concomitant aromatization to generate 2-aryl(alkyl)aminopyrimidine derivatives is described. The reaction proceeded well with a wide range of thiono substrates and aryl/aliphatic amines as the coupling partners, offering efficient access to biologically and pharmacologically valuable 2-aryl(alkyl)aminopyrimidines with rapid diversification.
Collapse
Affiliation(s)
- Ngoc Son Le Pham
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| | - Yujeong Kwon
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| | - Hyunik Shin
- Yonsung Fine Chemicals R&D CenterSuwon 16675Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| |
Collapse
|
4
|
Recent developments in promiscuous enzymatic reactions for carbon-nitrogen bond formation. Bioorg Chem 2022; 127:106014. [PMID: 35841668 DOI: 10.1016/j.bioorg.2022.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic promiscuity is a new field of enzyme application in biochemistry, which has received much attention and has developed rapidly in recent years. The promiscuous biocatalysis has been promoted as a useful supplement to traditional strategy for the formation of C-heteroatom bonds. The generation of carbon-nitrogen (CN) bonds is an important issue in synthetic chemistry and is indispensable for the manufacturing of various pharmaceuticals and agrochemicals. Therefore, numerous efficient and reliable synthetic methods for the formation of CN bonds have been developed in recent years. Enzymatic CN bond forming reactions catalyzed by lipases, cytochrome P450 monooxygenases, glycosyltransferases, amine dehydrogenases, proteases, acylases, amylases and halohydrin dehalogenases are well established for synthetic purposes. This review introduces the recent progress in the construction of CN bonds using promiscuous enzymes.
Collapse
|
5
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
6
|
Halder P, Roy T, Das P. Recent developments in selective N-arylation of azoles. Chem Commun (Camb) 2021; 57:5235-5249. [PMID: 33908975 DOI: 10.1039/d1cc01265g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition-metal based carbon-heteroatom (C-X) bond formation has attracted the attention of synthetic chemists over the past few years because the resultant aryl/heteroaryl motifs are important substructures in many natural products, pharmaceuticals, etc. Several efficient protocols such as Buchwald-Hartwig amination, Ullmann coupling, Chan-Lam coupling and metal-free approaches have proved beneficial in C-X bond formation. Selective arylation of one hetero-centre over other centres without protection/deprotection thus allowing minimum synthetic manipulation has been achieved for several substrates using these protocols. Azoles are one such novel five-membered heterocyclic core with huge pharmaceutical applications. Though N-arylation on azole-bearing analogues has been extensively practised, selective N-arylation either on one N-centre or the exocyclic N-site of the azole ring in competition with other hetero-centres in the framework has been recently explored for azole-carrying systems. Thus, this review would focus on recent advances in chemo- and regio-selective N-arylation (either on one N-centre or the exocyclic N-site of the azole ring) on azole-containing frameworks.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Tanumay Roy
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
7
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
8
|
Cao L, Hua Y, Cheng HG, Zhou Q. C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review article, we summarized recent advances in C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates.
Collapse
Affiliation(s)
- Liming Cao
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Yu Hua
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| |
Collapse
|
9
|
Chen H, Jiang W, Zeng Q. Recent Advances in Synthesis of Chiral Thioethers. CHEM REC 2020; 20:1269-1296. [PMID: 32930488 DOI: 10.1002/tcr.202000084] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Chiral thioethers is an important class of organosulfur molecules with extensive applications, especially in the field of medicine and organic synthesis. This review discusses the recent progress of synthesis of enantioenriched chiral thioethers and hopes to be helpful for related research in the future. It is summarized from organosulfur compounds-participating organic reaction types, including nucleophilic substitution, cross coupling, sulfa-Michael addition, sulfenylation, asymmetric allylic reaction, asymmetric Doyle-Kirmse reaction, Pummerer-type rearrangement, Smiles rearrangement,[2,3] Stevens and Sommelet-Hauser rearrangement.
Collapse
Affiliation(s)
- Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Wenlong Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| |
Collapse
|
10
|
Huang Y, Chen H, Zheng W, Zeng Q. Cu2O-catalyzed C–S coupling of quaternary ammonium salts and sodium alkane-/arene-sulfinates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dörr M, Röckl JL, Rein J, Schollmeyer D, Waldvogel SR. Electrochemical C-H Functionalization of (Hetero)Arenes-Optimized by DoE. Chemistry 2020; 26:10195-10198. [PMID: 32232873 PMCID: PMC7496267 DOI: 10.1002/chem.202001171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/28/2020] [Indexed: 01/01/2023]
Abstract
A novel approach towards the activation of different arenes and purines including caffeine and theophylline is presented. The simple, safe and scalable electrochemical synthesis of 1,1,1,3,3,3‐hexafluoroisopropanol (HFIP) aryl ethers was conducted using an easy electrolysis setup with boron‐doped diamond (BDD) electrodes. Good yields up to 59 % were achieved. Triethylamine was used as a base as it forms a highly conductive media with HFIP, making additional supporting electrolytes superfluous. The synthesis was optimized using Design of Experiment (DoE) techniques giving a detailed insight to the significance of the reaction parameters. The mechanism was investigated by cyclic voltammetry (CV). Subsequent transition metal‐catalyzed as well as metal‐free functionalization led to interesting motifs in excellent yields up to 94 %.
Collapse
Affiliation(s)
- Maurice Dörr
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Johannes L Röckl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Graduate School Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Jonas Rein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Graduate School Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| |
Collapse
|
12
|
Foley BJ, Palit CM, Bhuvanesh N, Zhou J, Ozerov OV. Concerted aryl-sulfur reductive elimination from PNP pincer-supported Co(iii) and subsequent Co(i)/Co(iii) comproportionation. Chem Sci 2020; 11:6075-6084. [PMID: 32953010 PMCID: PMC7480512 DOI: 10.1039/d0sc01813a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
This report discloses a combined experimental and computational study aimed at understanding C-S reductive elimination from Co(iii) supported by a diarylamido/bis(phosphine) PNP pincer ligand. Divalent (PNP)Co-aryl complexes could be easily oxidized to five-coordinate Co(iii) derivatives, and anion metathesis provided five-coordinate (PNP)Co(Ar)(SAr') complexes of Co(iii). In contrast to their previously described (POCOP)Co(Ar)(SAr') analogs, but similarly to the (PNP)Rh(Ar)(SAr') and (POCOP)Rh(Ar)(SAr') analogs, (PNP)Co(Ar)(SAr') undergo C-S reductive elimination with the formation of the desired diarylsulfide product ArSAr'. DFT studies and experimental observations are consistent with a concerted process. However, in contrast to the Rh analogs, the immediate product of such reductive elimination, the unobserved Co(i) complex (PNP)Co, un-dergoes rapid comproportionation with the (PNP)Co(Ar)(SAr') starting material to give Co(ii) compounds (PNP)Co-Ar and (PNP)Co-SAr'.
Collapse
Affiliation(s)
- Bryan J Foley
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77842 , USA .
| | - Chandra Mouli Palit
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77842 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77842 , USA .
| | - Jia Zhou
- School of Science , Harbin Institute of Technology , Shenzhen 518055 , China .
| | - Oleg V Ozerov
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77842 , USA .
| |
Collapse
|
13
|
Chen H, Zhang Q, Zheng W, Yang H, Zeng Q. Copper‐Catalyzed C−S Coupling of Quaternary Ammonium Salts and Dialkylcarbamodithioic Acid Salts. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionCollege of MaterialsChemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Qiaoling Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionCollege of MaterialsChemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionCollege of MaterialsChemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Hongqin Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionCollege of MaterialsChemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionCollege of MaterialsChemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| |
Collapse
|
14
|
Zheng W, Tan M, Yang L, Zhou L, Zeng Q. I2
-Catalyzed N-Sulfonylation of Sulfoximines with Sulfinates in Water at Room Temperature. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Mingchao Tan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Lu Yang
- Department of Chemistry; Graduate School of Science; Tohoku University; 980-8578 Sendai Japan
| | - Lihong Zhou
- College of Environment and Ecology; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| |
Collapse
|
15
|
Copper-catalyzed C–P cross-coupling of arylmethyl quaternary ammonium salts via C–N bond cleavage. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02535-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Wang G, Zhou L, Li N, Zeng Q. Green and Efficient Synthesis of Thiophosphinates, Thiophosphates, and Thiophosphinites in Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201903995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guanghui Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Lihong Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
- College of Environment and EcologyChengdu University of Technology Chengdu 610059 China
| | - Nutao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 China
| |
Collapse
|
17
|
Tan M, Zheng W, Yang L, Zhou L, Zeng Q. I
2
‐Catalyzed Oxidative N−P Cross‐Coupling of Diarylphosphine Oxides and Sulfoximines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mingchao Tan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| | - Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| | - Lu Yang
- Department of Chemistry Graduate School of ScienceTohoku University 6-3 Azaaoba Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Lihong Zhou
- College of Environment and EcologyChengdu University of Technology Chengdu 610059 P. R. China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| |
Collapse
|
18
|
Chen H, Yang H, Li N, Xue X, He Z, Zeng Q. Palladium-Catalyzed C–N Cross-Coupling of NH-Heteroarenes and Quaternary Ammonium Salts via C–N Bond Cleavage. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongqin Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Nutao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xinghua Xue
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ze He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
19
|
Visible light promoted synthesis of N-aroylsulfoximines by oxidative C-H acylation of NH-sulfoximines. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9499-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Jiang W, Li N, Zhou L, Zeng Q. Copper-Catalyzed Stereospecific C–S Coupling Reaction of Enantioenriched Tertiary Benzylic Amines via in Situ Activation with Methyl Triflate. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wenlong Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, People’s Republic of China
| | - Nutao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, People’s Republic of China
| | - Lihong Zhou
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, Sichuan, People’s Republic of China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, People’s Republic of China
| |
Collapse
|