1
|
Sakoda K, Furugaki H, Yamaguchi S, Mitsudome T, Mizugaki T. Reductive amination of triglycerides to fatty amines over a titanium oxide-supported Pt-Mo catalyst. Org Biomol Chem 2025. [PMID: 39757889 DOI: 10.1039/d4ob01843e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The reductive amination of naturally abundant triglycerides is a promising approach for the synthesis of fatty amines. However, existing catalytic systems for this transformation typically require harsh reaction conditions. Herein, we present a titanium oxide-supported platinum-molybdenum (Pt-Mo/TiO2) catalyst that promotes the reductive amination of triglycerides to fatty amines. The Pt-Mo/TiO2 catalyst exhibits a high activity under milder conditions, specifically at 1 MPa of H2, surpassing the performance of previously reported catalysts. A wide range of triglycerides, including cooking oils, are successfully converted into the corresponding fatty amines in high yields. The Pt-Mo/TiO2 catalyst is reusable and applicable to gram-scale reactions, demonstrating the high potential of Pt-Mo/TiO2 for green and sustainable fatty amine production.
Collapse
Affiliation(s)
- Katsumasa Sakoda
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Harumi Furugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
2
|
Ding S, Fernandez Ainaga DL, Hu M, Qiu B, Khalid U, D'Agostino C, Ou X, Spencer B, Zhong X, Peng Y, Hondow N, Theodoropoulos C, Jiao Y, Parlett CMA, Fan X. Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes. Nat Commun 2024; 15:7718. [PMID: 39231994 PMCID: PMC11375062 DOI: 10.1038/s41467-024-51925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Spatial control over features within multifunctional catalysts can unlock efficient one-pot cascade reactions, which are themselves a pathway to aviation biofuels via hydrodeoxygenation. A synthesis strategy that encompasses spatial orthogonality, i.e., one in which different catalytic species are deposited exclusively within discrete locations of a support architecture, is one solution that permits control over potential interactions between different sites and the cascade process. Here, we report a Pd doped hierarchical zeolite, in which Pd nanoparticles are selectively deposited within the mesopores, while acidity is retained solely within the micropores of ZSM-5. This spatial segregation facilitates hydrodeoxygenation while suppressing undesirable decarboxylation and decarbonation, yielding significant enhancements in activity (30.6 vs 3.6 moldodecane molPd-1 h-1) and selectivity (C12:C11 5.2 vs 1.9) relative to a conventionally prepared counterpart (via wet impregnation). Herein, multifunctional material design can realise efficient fatty acid hydrodeoxygenation, thus advancing the field and inspiring future developments in rationalised catalyst design.
Collapse
Affiliation(s)
- Shengzhe Ding
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Catalysis Science, Beijing Research Institute of Chemical Industry, Sinopec, Beijing, 100013, China
| | | | - Min Hu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Boya Qiu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Ushna Khalid
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Università di Bologna, 40131, Bologna, Italy
| | - Xiaoxia Ou
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China
| | - Ben Spencer
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiangli Zhong
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Yani Peng
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- University of Manchester at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- UK Catalysis Hub, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK.
| | - Xiaolei Fan
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China.
| |
Collapse
|
3
|
Yuan K, Yamazaki Y, Jin X, Nozaki K. Multifunctional WO 3-ZrO 2-Supported Platinum Catalyst for Remarkably Efficient Hydrogenolysis of Esters to Alkanes. J Am Chem Soc 2023; 145:3454-3461. [PMID: 36657125 DOI: 10.1021/jacs.2c11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hydrogenolysis of esters to alkanes is a key protocol for the synthesis of high-quality hydrocarbon fuels from renewable plant oils or fats. However, performing this process under mild energy-efficient conditions is challenging. Herein, we report a robust tungsten- and zirconium-oxide-supported platinum catalyst (Pt/WO3-ZrO2) for the hydrogenolysis of esters to alkanes at low temperatures (as low as 70 °C) and under ambient pressure (1 atm) of H2. For example, tristearin undergoes a complete conversion at 130 °C with more than 95% selectivity for the corresponding alkanes without carbon loss. In addition, the heterogeneous nature of the catalyst system reported herein permits multiple reuse of the catalyst without any significant loss of its high activity and selectivity. Mechanistic studies suggest that the multifunctional nature (acid and redox properties) of the WO3-ZrO2 support plays an important role in the high activity of the catalyst.
Collapse
Affiliation(s)
- Kang Yuan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yukari Yamazaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
5
|
Ding S, Parlett CM, Fan X. Recent developments in multifunctional catalysts for fatty acid hydrodeoxygenation as a route towards biofuels. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Haus MO, Meledin A, Leiting S, Louven Y, Roubicek NC, Moos S, Weidenthaler C, Weirich TE, Palkovits R. Correlating the Synthesis, Structure, and Catalytic Performance of Pt–Re/TiO2 for the Aqueous-Phase Hydrogenation of Carboxylic Acid Derivatives. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moritz O. Haus
- Lehrstuhl für Heterogene Katalyse und Technische Chemie, RWTH Aachen University, Worringerweg 2, DE-52074 Aachen, Germany
| | - Alexander Meledin
- Gemeinschaftslabor für Elektronenmikroskopie/Institut für Kristallographie, RWTH Aachen University, Ahornstraße 55, DE-52074 Aachen, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich GmbH, DE-52428 Jülich, Germany
| | - Sebastian Leiting
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yannik Louven
- Lehrstuhl für Heterogene Katalyse und Technische Chemie, RWTH Aachen University, Worringerweg 2, DE-52074 Aachen, Germany
| | - Nico C. Roubicek
- Lehrstuhl für Heterogene Katalyse und Technische Chemie, RWTH Aachen University, Worringerweg 2, DE-52074 Aachen, Germany
| | - Sven Moos
- Lehrstuhl für Heterogene Katalyse und Technische Chemie, RWTH Aachen University, Worringerweg 2, DE-52074 Aachen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Thomas E. Weirich
- Gemeinschaftslabor für Elektronenmikroskopie/Institut für Kristallographie, RWTH Aachen University, Ahornstraße 55, DE-52074 Aachen, Germany
| | - Regina Palkovits
- Lehrstuhl für Heterogene Katalyse und Technische Chemie, RWTH Aachen University, Worringerweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
7
|
Yoshioka S, Wen K, Saito S. Development of Effective Bidentate Diphosphine Ligands of Ruthenium Catalysts toward Practical Hydrogenation of Carboxylic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shota Yoshioka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ke Wen
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Mine S, Yamaguchi T, Ting KW, Maeno Z, Siddiki SMAH, Oshima K, Satokawa S, Shimizu KI, Toyao T. Reverse water-gas shift reaction over Pt/MoO x/TiO 2: reverse Mars–van Krevelen mechanism via redox of supported MoO x. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00289a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pt/MoOx/TiO2 shows excellent catalytic performance for the reverse water-gas shift reaction at 250 °C via reverse Mars–van Krevelen mechanism.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | | | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | - Kazumasa Oshima
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| |
Collapse
|
9
|
Affiliation(s)
- Renat Kadyrov
- Institute of Inorganic ChemistryAcademy of Sciences of the Czech Republic 25068 Řež Czech Republic
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau Germany
| | - Konrad Moebus
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau Germany
| |
Collapse
|
10
|
Mu J, Liu J, Ran Z, Arif M, Gao M, Wang C, Ji S. Critical Role of CUS in the Au/MOF-808(Zr) Catalyst for Reaction of CO 2 with Amine/H 2 via N-Methylation and N-Formylation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jincheng Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of XPCC, Tarim University, Xinjiang, Alar 843300, China
| | - Jianfang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenzhen Ran
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Arif
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Tamura M, Nakagawa Y, Tomishige K. Recent Developments of Heterogeneous Catalysts for Hydrogenation of Carboxylic Acids to their Corresponding Alcohols. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masazumi Tamura
- Department of Applied ChemistrySchool of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku, Sendai Miyagi 980-8579 Japan
| | - Yoshinao Nakagawa
- Department of Applied ChemistrySchool of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku, Sendai Miyagi 980-8579 Japan
| | - Keiichi Tomishige
- Department of Applied ChemistrySchool of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku, Sendai Miyagi 980-8579 Japan
| |
Collapse
|
12
|
Toyao T, Maeno Z, Takakusagi S, Kamachi T, Takigawa I, Shimizu KI. Machine Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04186] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Satoru Takakusagi
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Kamachi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
- Department of Life, Environment and Materials Science, Fukuoka Institute of Technology, 3-30-1Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Ichigaku Takigawa
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
13
|
Toyao T, Kayamori S, Maeno Z, Siddiki SMAH, Shimizu KI. Heterogeneous Pt and MoOx Co-Loaded TiO2 Catalysts for Low-Temperature CO2 Hydrogenation To Form CH3OH. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Shingo Kayamori
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | | | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Ting KW, Toyao T, Siddiki SMAH, Shimizu KI. Low-Temperature Hydrogenation of CO2 to Methanol over Heterogeneous TiO2-Supported Re Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04821] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | | | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
15
|
Toyao T, Ting KW, Siddiki SMAH, Touchy AS, Onodera W, Maeno Z, Ariga-Miwa H, Kanda Y, Asakura K, Shimizu KI. Mechanistic study of the selective hydrogenation of carboxylic acid derivatives over supported rhenium catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01404g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The structure and performance of TiO2-supported Re (Re/TiO2) catalysts for selective hydrogenation of carboxylic acid derivatives have been investigated.
Collapse
Affiliation(s)
- Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Kah Wei Ting
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | | | - Abeda S. Touchy
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Wataru Onodera
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | | | - Yasuharu Kanda
- Applied Chemistry Research Unit
- College of Environmental Technology
- Graduate School of Engineering
- Muroran Institute of Technology
- Muroran 050-8585
| | | | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|