1
|
Li N, Ma Y, Sun W. Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy. Molecules 2024; 29:3995. [PMID: 39274845 PMCID: PMC11396338 DOI: 10.3390/molecules29173995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the photo-generated charge separation process spans a huge spatio-temporal scale from femtoseconds to seconds, and involves complex physical processes from microscopic atoms to macroscopic materials. Femtosecond transient absorption (fs-TA) spectroscopy is a powerful tool for studying electron transfer paths in photogenerated carrier dynamics of photocatalysts. By extracting the attenuation characteristics of the spectra, the quenching path and lifetimes of carriers can be simulated on femtosecond and picosecond time scales. This paper introduces the principle of transient absorption, typical dynamic processes and the application of femtosecond transient absorption spectroscopy in photocatalysis, and summarizes the bottlenecks faced by ultrafast spectroscopy in photocatalytic applications, as well as future research directions and solutions. This will provide inspiration for understanding the charge transfer mechanism of photocatalytic processes.
Collapse
Affiliation(s)
- Na Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanlong Ma
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
2
|
Li B, Ma B, Wang SY, Yu MM, Zhang ZQ, Xiao MJ, Zhang H, Wu JF, Peng Y, Wang Q, Zhang HL. Vacancy engineering of two-dimensional W 2N 3 nanosheets for efficient CO 2 hydrogenation. NANOSCALE 2022; 14:9736-9742. [PMID: 35765938 DOI: 10.1039/d2nr02262a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peaking carbon emissions and achieving carbon neutrality have become the consensus goal of the international community to solve the environmental problems threatening mankind caused by accumulative greenhouse gases like CO2. Herein we proposed vacancy engineering of two-dimensional (2D) topological W2N3 for efficient CO2 hydrogenation into high value-added chemicals and fuels. Spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) confirmed a large amount of N vacancies on the catalyst surface, which significantly reduced the energy barrier for the formation of the essential intermediates of *CO and *CHO as revealed by density functional theory (DFT) calculations. Consequently, the highly stable catalyst exhibited efficient CO2 hydrogenation superior to many previous reports with a maximum CO2 conversion rate of 24% and a high selectivity of 23% for C2+ hydrocarbons. This work provided not only insight into the vacancy-controlled CO2 hydrogenation mechanism, but also fresh ammunition to bring the remaining potential of 2D topological transition metal nitrides in the field of catalysis.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Shu-Yan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Ming Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Jun Xiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Jian-Feng Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Yong Peng
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
4
|
Zhang ZT, Yang QQ, Zhen XJ, Feng ZZ, Zhai XP, Zhang XD, Huang YF, Wang Q, Zhang HL. Two-Dimensional Bismuthene Showing Radiation-Tolerant Third-Order Optical Nonlinearities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21626-21634. [PMID: 33904717 DOI: 10.1021/acsami.1c03042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ever-increasing space exploration enterprise calls for novel and high-quality radiation-resistant materials, among which nonlinear optical materials and devices are particularly scarce. Two-dimensional (2D) materials have shown promising potential, but the radiation effects on their nonlinear optical properties remain largely elusive. We previously fabricated 2D bismuthene for mode-locking sub-ns laser; herein, their space adaption was evaluated under a simulated space radiation environment. The as-synthesized thin layers of bismuthene exhibited strong third-order nonlinear optical responses extending into the near-infrared region. Remarkably, when exposed to 60Co γ-rays and electron irradiation, the bismuthene showed only slight degradation in saturable absorption behaviors that were critical for mode-locking in space. Ultrafast spectroscopy was applied to address the radiation effects and damage mechanisms that are difficult to understand by routine techniques. This work offers a new bottom-up approach for preparing 2D bismuthene, and the elucidation of its fundamental excited-state dynamics after radiation also provides a guideline to optimize the material for eventual space applications.
Collapse
Affiliation(s)
- Zheng-Tao Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qi Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Juan Zhen
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730000, China
| | - Zhan-Zu Feng
- Science and Technology on Material Performance Evaluating in Space Environment Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
| | - Xin-Ping Zhai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Dong Zhang
- National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yi-Fan Huang
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Zhai XP, Ma B, Wang Q, Zhang HL. 2D materials towards ultrafast photonic applications. Phys Chem Chem Phys 2020; 22:22140-22156. [DOI: 10.1039/d0cp02841j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc.
Collapse
Affiliation(s)
- Xin-Ping Zhai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
| |
Collapse
|