1
|
Hu YH, Gan ZY, Li QT, Chen YT, Chen ME, Zhang LH, Zou JC, Zhang FM. Spokewise Total Syntheses of Four Erythrina Alkaloids and Telescoped Syntheses of Six Additional Alkaloids. J Org Chem 2024; 89:14164-14176. [PMID: 39291865 DOI: 10.1021/acs.joc.4c01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Based on rich sulfur-involving chemical transformations, a novel spokewise synthetic strategy, a subclass of the collective strategies, has been developed to concisely synthesize four erythrina alkaloids through a single-step transformation from a common synthetic precursor. Moreover, six additional erythrina alkaloids have also been synthesized by subsequent 1-2 steps chemical transformations. The current synthetic approaches provide a valuable platform for collective total syntheses of erythrina alkaloids and pseudo-natural erythrina alkaloids.
Collapse
Affiliation(s)
- Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhang-Yan Gan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qin-Tong Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu-Ting Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Chi Zou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
2
|
Wang H, Nkingwa AA, Islam F, Xu C, Zeng Q. Advances in Difunctionalization of Olefins with Diorganyl Dichalcogenides. Chem Asian J 2024; 19:e202300883. [PMID: 37950799 DOI: 10.1002/asia.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/13/2023]
Abstract
Organochalcogen molecules have extensive applications in various fields. They serve as pharmaceuticals, ligands, organocatalysts, agrochemicals, and other functional materials. Difunctionalization of olefins, which belong to a class of multicomponent reactions, is a successful technique for introducing two functional moieties in a single-step reaction, both in terms of atom economy and step economy. The difunctionalization of olefins with diorganyl dichalcogenides may effectively increase the molecular complexity, which has achieved significant advancements in recent decades. This article describes recent advancements in the difunctionalization of olefins with diorganyl diselenides and diorganyl disulfides.
Collapse
Affiliation(s)
- Helin Wang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Alex Adonis Nkingwa
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Fawad Islam
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Chao Xu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qingle Zeng
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
3
|
Liu X, Hao L, Wang Y, Ji Y. Synthesis of β-Hydroxysulfides via Multi-Component Cascade Hydroxysulfenylation of Styrenes with NH 4 SCN and Water under Transition-metal-free Conditions. Chem Asian J 2024; 19:e202300901. [PMID: 37964673 DOI: 10.1002/asia.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Transition-mental-free multi-component hydroxysulfenylation of styrenes with NH4 SCN and water to from β-hydroxysulfides is established. The reaction mechanism proceeded via a domino reaction after a radical addition to 2-phenylimidazo[1,2-a]pyridines. This approach features a wide substrate scope and functional group compatibility, providing 34 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Nie H, Xiong Z, Hu M, Zhang S, Qin C, Wang S, Ji F, Jiang G. Copper-Catalyzed Sulfonylation Reaction of NH-Sulfoximines with Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: Formation of N-Sulfonyl Sulfoximines. J Org Chem 2023; 88:2322-2333. [PMID: 36701768 DOI: 10.1021/acs.joc.2c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient and practical SO2 insertion protocol of NH-sulfoximines with aryldiazonium tetrafluoroborates and DABSO toward N-sulfonyl sulfoximines has been developed under mildly basic conditions. This transformation features easy operation, readily available substrates, and mild conditions. A tentative mechanism is proposed, which indicates that the aryldiazonium tetrafluoroborates would be radical donors under standard reaction conditions. The aryl radical produced in situ from diazonium salts would be trapped by SO2 to generate an arylsulfonyl radical and then undergo further transformation to generate the final N-sulfonyl sulfoximines.
Collapse
Affiliation(s)
- Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
5
|
Sharma S, Singh D, Kumar S, Vaishali, Jamra R, Banyal N, Deepika, Malakar CC, Singh V. An efficient metal-free and catalyst-free C-S/C-O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides. Beilstein J Org Chem 2023; 19:231-244. [PMID: 36895429 PMCID: PMC9989676 DOI: 10.3762/bjoc.19.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
An operationally simple and metal-free approach is described for the synthesis of pyrazole-tethered thioamide and amide conjugates. The thioamides were generated by employing a three-component reaction of diverse pyrazole C-3/4/5 carbaldehydes, secondary amines, and elemental sulfur in a single synthetic operation. The advantages of this developed protocol refer to the broad substrate scope, metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Dharmender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Central Revenues Control Laboratory, New Delhi-110012, India
| | - Sunit Kumar
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Rahul Jamra
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Naveen Banyal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deepika
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
6
|
Abdi A, Hosseini SS, Nikbakht A, Bijanzadeh HR, Rominger F, Balalaie S. Regioselective Hydrothiolation of Allenoates through a Ca(OTf)
2
‐Promoted Three‐Component Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aida Abdi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - S. Sina Hosseini
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Ali Nikbakht
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Noor Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 271 69120 Heidelberg Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| |
Collapse
|
7
|
Liu W, Ke J, He C. Sulfur stereogenic centers in transition-metal-catalyzed asymmetric C-H functionalization: generation and utilization. Chem Sci 2021; 12:10972-10984. [PMID: 34522294 PMCID: PMC8386673 DOI: 10.1039/d1sc02614c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Transition-metal-catalyzed enantioselective C–H functionalization has emerged as a powerful tool for the synthesis of enantioenriched compounds in chemical and pharmaceutical industries. Sulfur-based functionalities are ubiquitous in many of the biologically active compounds, medicinal agents, functional materials, chiral auxiliaries and ligands. This perspective highlights recent advances in sulfur functional group enabled transition-metal-catalyzed enantioselective C–H functionalization for the construction of sulfur stereogenic centers, as well as the utilization of chiral sulfoxides to realize stereoselective C–H functionalization. This perspective highlights sulfur functional groups enabled enantioselective C–H functionalization for the construction of sulfur stereogenic centers, and the utilization of chiral sulfoxide to realize stereoselective C–H functionalization.![]()
Collapse
Affiliation(s)
- Wentan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
8
|
Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem Commun (Camb) 2021; 57:8236-8249. [PMID: 34319313 DOI: 10.1039/d1cc03018c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic photochemistry and electrochemistry currently receive tremendous attention in organic synthesis as both techniques enable the reagent-less activation of organic molecules without using expensive and hazardous redox reagents. The incorporation of SO2 into organic molecules is a relatively modern research topic, which likewise gains immense popularity since the discovery of the SO2 surrogate DABSO. Sulfur-containing organic molecules are omnipresent in pharmaceuticals and agrochemicals. This review covers the recent progress in electrochemical and photochemical methodologies for the incorporation and uses of SO2 in the synthesis of value-added compounds. Additionally, different work techniques are demonstrated for the synthetic application of SO2.
Collapse
Affiliation(s)
- Stephan P Blum
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
9
|
Tang Q, Li F, Chen H, Yin X, Tang Y, Zeng Q. Synthesis of (Enantioenriched) Dibenzyl Thioethers and Disulfides via S
N
2 Nucleophilic Substitution of Quaternary Ammonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qinqin Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| | - Fuhai Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| | - Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| | - Xianjie Yin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| | - Yan Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 610059 Chengdu P. R. China
| |
Collapse
|