1
|
Wright JS, Sharninghausen LS, Lapsys A, Sanford MS, Scott PJH. C-H Labeling with [ 18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS CENTRAL SCIENCE 2024; 10:1674-1688. [PMID: 39364044 PMCID: PMC11447958 DOI: 10.1021/acscentsci.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F+" reagents (e.g., [18F]F2) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [18F]fluoride sources (e.g., [18F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SNAr, SN2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex Lapsys
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
3
|
Wen L, Zou Z, Zhou N, Sun C, Xie P, Feng P. Electrochemical Fluorination Functionalization of gem-Difluoroalkenes with CsF as a Fluorine Source: Access to Fluoroalkyl Building Blocks. Org Lett 2024; 26:241-246. [PMID: 38156980 DOI: 10.1021/acs.orglett.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Using easily handled CsF as a fluorine source, an electrochemically metal-free protocol for chemo- and regioselective synthesis of various types of long-chain perfluoroalkyl aromatics with gem-difluoroalkene as a substrate and an alcohol or azole as an additional nucleophile was developed. The eletrochemical transformation could tolerate several functional groups, such as halogens, cyanos, benzyls, and heterocycles, and is amenable to gram-scale. The application of this electrochemical method in radiofluorination was also tested.
Collapse
Affiliation(s)
- Linzi Wen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ziyan Zou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Naifu Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengbo Sun
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Peixu Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Berger M, Lenhard MS, Waldvogel SR. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes. Chemistry 2022; 28:e202201029. [PMID: 35510825 PMCID: PMC9401020 DOI: 10.1002/chem.202201029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The para-selective fluorination reaction of anilides using electrochemically generated hypervalent ArIF2 is reported, with Et3 N ⋅ 5HF serving as fluoride source and as supporting electrolyte. This electrochemical reaction is characterized by a simple set-up, easy scalability and affords a broad variety of fluorinated anilides from easily accessible anilides in good yields up to 86 %.
Collapse
Affiliation(s)
- Michael Berger
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Marola S. Lenhard
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
5
|
Liu Z, Sun Y, Liu T. Recent Advances in Synthetic Methodologies to Form C-18F Bonds. Front Chem 2022; 10:883866. [PMID: 35494631 PMCID: PMC9047704 DOI: 10.3389/fchem.2022.883866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography (PET) is an important technique for the early diagnosis of disease. Due to the specific physical and chemical properties of Fluorine-18, this important isotope is widely used in PET for labelling and molecular imaging, and its introduction into medicine molecules could produce PET tracers. Developing with the development of organic synthetic methodologies, the introduction of Fluorine-18 into drug molecules efficiently and rapidly under mild conditions, and the formation of C-18F chemical bonds, has become one of the leading topics in both organic synthetic chemistry and radiochemistry. In this mini-review, we review a series of recent advances in the organic synthesis of C-18F bonds (2015–2021), including non-catalytic radiofluorinations via good leaving functional groups, transition metal-catalyzed radiofluorinations, and photo- or electro-catalytic synthetic radiofluorinations. As a result of the remarkable advancements in this field, organic synthetic methods for forming C-18F bonds are expected to continue growing.
Collapse
Affiliation(s)
- Zhiyi Liu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
| | - Yijun Sun
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
| | - Tianfei Liu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tianfei Liu,
| |
Collapse
|
6
|
Griffiths GL, Vasquez C, Escorcia F, Clanton J, Lindenberg L, Mena E, Choyke PL. Translating a radiolabeled imaging agent to the clinic. Adv Drug Deliv Rev 2022; 181:114086. [PMID: 34942275 PMCID: PMC8889912 DOI: 10.1016/j.addr.2021.114086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
Molecular Imaging is entering the most fruitful, exciting period in its history with many new agents under development, and several reaching the clinic in recent years. While it is unusual for just one laboratory to take an agent from initial discovery through to full clinical approval the steps along the way are important to understand for all interested participants even if one is not involved in the entire process. Here, we provide an overview of these processes beginning at discovery and preclinical validation of a new molecular imaging agent and using as an exemplar a low molecular weight disease-specific targeted positron emission tomography (PET) agent. Compared to standard drug development requirements, molecular imaging agents may benefit from a regulatory standpoint from their low mass administered doses, they nonetheless still need to go through a series of well-defined steps before they can be considered for Phase 1 human testing. After outlining the discovery and preclinical validation approaches, we will also discuss the nuances of Phase 1, Phase 2 and Phase 3 studies that may culminate in an FDA general use approval. Finally, some post-approval aspects of novel molecular imaging agents are considered.
Collapse
Affiliation(s)
- Gary L. Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Crystal Vasquez
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Freddy Escorcia
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | | | - Liza Lindenberg
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Peter L. Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|