1
|
Touj N, Taping JJ, Tumanov N, Wouters J, Delaude L. The Facile Hydrolysis of Imidazolinium Chlorides (N-Heterocyclic Carbene Precursors) Under Basic Aqueous Conditions. Chemistry 2023; 29:e202302402. [PMID: 37665254 DOI: 10.1002/chem.202302402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
The hydrolysis of imidazolinium chlorides takes place readily in a basic water/dichloromethane biphasic mixture at room temperature. Experimental parameters were optimized to afford full conversions and high yields of γ-aminoformamides starting from twelve symmetrical substrates with alkyl or aryl substituents on their nitrogen atoms, and five unsymmetrical 1-alkyl-3-arylimidazolinium chlorides. NMR and XRD analyses showed that the cleavage of unsymmetrical salts led to γ-alkylamino-N-arylformamides with a high regioselectivity and that bulky alkyl or aryl groups on the formamide moiety led to the isolation of the (E)-isomer in high stereoisomeric purity (>95 %), whereas smaller and more flexible alkyl substituents afforded mixtures of (E)- and (Z)-rotamers. Control experiments showed that the hydrolysis of 1,3-dimesitylimidazolinium chloride (SIMes ⋅ HCl) did not occur readily in pure or acidic water and that the presence of bulky aromatic substituents on the nitrogen atoms of 1,3-bis(2,6-diisopropylphenyl)imidazolinium chloride (SIDip ⋅ HCl) efficiently slowed down its hydrolysis under basic aqueous conditions. Most strikingly, this work highlighted the critical influence of the counteranion on the reactivity of imidazolinium cations. Indeed, the chloride salts underwent a facile hydrolysis in the presence of water and Na2 CO3 , whereas various other NHC ⋅ HX derivatives reacted much slower or remained essentially inert under these conditions.
Collapse
Affiliation(s)
- Nedra Touj
- Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium
| | - Jerwin Jay Taping
- Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium
| | - Nikolay Tumanov
- Department of Chemistry, Namur Institute of Structured Matter (NISM), Université de Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Namur Institute of Structured Matter (NISM), Université de Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium
| |
Collapse
|
2
|
Grzesiński Ł, Milewski M, Nadirova M, Kajetanowicz A, Grela K. Unexpected Latency of Z-Stereoretentive Ruthenium Olefin Metathesis Catalysts Bearing Unsymmetrical N-heterocyclic Carbene or Cyclic(alkyl)(amino)carbene Ligands. Organometallics 2023; 42:2453-2459. [PMID: 37772273 PMCID: PMC10526643 DOI: 10.1021/acs.organomet.2c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 03/12/2023]
Abstract
A set of ruthenium complexes bearing a CAAC or uNHC ligand and a dithiocatechol fragment have been obtained and characterized spectroscopically. The activity and Z-selectivity of the newly obtained catalysts were studied in selected model CM, self-CM, and RCM olefin metathesis reactions. Intriguingly, and in contrast to structurally related NHC-bearing catalysts Ru4a and Ru4b, the CAAC and uNHC analogues showed no or only very little activity in olefin metathesis. Interestingly, despite being not productive in metathesis reactions conducted in solution, Ru8 enabled the synthesis of a model 16-membered macrocyclic lactone of valuable musk smell with excellent chemoselectivity (no C-C double-bond migration was observed) at a concentration 40 times higher than that typically used by organic chemists in similar macrocyclizations (200 mM instead of 5 mM) with excellent Z-selectivity. Unfortunately, also here the conversion was low.
Collapse
Affiliation(s)
- Łukasz Grzesiński
- Biological and Chemical Research
Centre, Faculty of Chemistry, University
of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Mariusz Milewski
- Biological and Chemical Research
Centre, Faculty of Chemistry, University
of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Maryana Nadirova
- Biological and Chemical Research
Centre, Faculty of Chemistry, University
of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research
Centre, Faculty of Chemistry, University
of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research
Centre, Faculty of Chemistry, University
of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts 2023. [DOI: 10.3390/catal13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two new unsymmetrical N-heterocyclic carbene ligand (uNHC)-based ruthenium complexes featuring phenolic OH function were obtained and fully characterised. The more active one was then immobilised on the metal–organic framework (MOF) solid support (Al)MIL-101-NH2. The catalytic activity of such a heterogeneous system was tested, showing that, while the heterogeneous catalyst is less active than the corresponding homogeneous catalyst in solution, it can catalyse selected olefin metathesis reactions, serving as the proof-of-concept for the immobilisation of catalytically active complexes in MOFs using a phenolic tag.
Collapse
|
4
|
Kumandin PA, Antonova AS, Novikov RA, Vasilyev KA, Vinokurova MA, Grigoriev MS, Novikov AP, Polianskaia DK, Polyanskii KB, Zubkov FI. Properties and Catalytic Activity of Hoveyda–Grubbs-Type Catalysts with an S → Ru Coordination Bond in a Six-Membered Chelate Ring. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pavel A. Kumandin
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Alexandra S. Antonova
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry of RAS, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Kirill A. Vasilyev
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Marina A. Vinokurova
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, bld. 4, Moscow 119071, Russian Federation
| | - Anton P. Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, bld. 4, Moscow 119071, Russian Federation
| | - Daria K. Polianskaia
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Kirill B. Polyanskii
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Fedor I. Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| |
Collapse
|
5
|
Vasilyev KA, Antonova AS, Volchkov NS, Logvinenko NA, Nikitina EV, Grigoriev MS, Novikov AP, Kouznetsov VV, Polyanskii KB, Zubkov FI. Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity. Molecules 2023; 28:molecules28031188. [PMID: 36770854 PMCID: PMC9921640 DOI: 10.3390/molecules28031188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
An efficient approach to the synthesis of olefin metathesis HG-type catalysts containing an N→Ru bond in a six-membered chelate ring was proposed. For the most part, these ruthenium chelates can be prepared easily and in high yields based on the interaction between 2-vinylbenzylamines and Ind II (the common precursor for Ru-complex synthesis). It was demonstrated that the increase of the steric volume of substituents attached to the nitrogen atom and in the α-position of the benzylidene fragment leads to a dramatic decrease in the stability of the target ruthenium complexes. The bulkiest iPr substituent bonded to the nitrogen atom or to the α-position does not allow the closing of the chelate cycle. N,N-Diethyl-1-(2-vinylphenyl)propan-1-amine is a limiting case; its interaction with Ind II makes it possible to isolate the corresponding ruthenium chelate in a low yield (5%). Catalytic activity of the synthesized complexes was tested in RCM reactions and compared with α-unsubstituted catalysts obtained previously. The structural peculiarities of the final ruthenium complexes were thoroughly investigated using XRD and NMR analysis, which allowed making a reliable correlation between the structure of the complexes and their catalytic properties.
Collapse
Affiliation(s)
- Kirill A. Vasilyev
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| | - Alexandra S. Antonova
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| | - Nikita S. Volchkov
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| | - Nikita A. Logvinenko
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| | - Eugeniya V. Nikitina
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow 119071, Russia
| | - Anton P. Novikov
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow 119071, Russia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, Bucaramanga 680006, Colombia
| | - Kirill B. Polyanskii
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
- Correspondence: (K.B.P.); (F.I.Z.)
| | - Fedor I. Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
- Correspondence: (K.B.P.); (F.I.Z.)
| |
Collapse
|
6
|
Capacchione C, Grisi F, Lamberti M, Mazzeo M, Milani B, Milione S, Pappalardo D, Zuccaccia C, Pellecchia C. Metal Catalyzed Polymerization: From Stereoregular Poly(α‐olefins) to Tailor‐Made Biodegradable/Biorenewable Polymers and Copolymers. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Fabia Grisi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06132 Perugia Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
7
|
Alternating Ring-Opening Metathesis Polymerization Promoted by Ruthenium Catalysts Bearing Unsymmetrical NHC Ligands. Catalysts 2022. [DOI: 10.3390/catal13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this paper, Grubbs- and Hoveyda–Grubbs-type olefin metathesis catalysts featuring N-cyclopentyl/N’-mesityl backbone-substituted N-heterocyclic carbene (NHC) ligands were synthesized. Their propensity to promote the alternating ring-opening metathesis copolymerization (ROMP) of norbornene (NBE) with cyclooctene (COE) or cyclopentene (CPE) was evaluated and compared to that shown by analogous N-cyclohexyl complexes. High degrees of chemoselectivity were achieved in both copolymerizations. The presence of the N-cyclopentyl substituent allowed for the achievement of up to 98% and 97% of alternating diads for NBE-COE and NBE-CPE copolymers, respectively, at low comonomer ratios. Density functional theory (DFT) studies showed that both the sterical and electronic effects of NHC ligands influence catalyst selectivity.
Collapse
|
8
|
Self-Supported Polymeric Ruthenium Complexes as Olefin Metathesis Catalysts in Synthesis of Heterocyclic Compounds. Catalysts 2022. [DOI: 10.3390/catal12101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New ruthenium olefin metathesis catalysts containing N-heterocyclic carbene (NHC) connected by a linker tether to a benzylidene ligand were studied. Such obtained self-chelated Hoveyda–Grubbs type complexes existed in the form of an organometallic polymer but could still catalyze olefin metathesis after being dissolved in an organic solvent. Although these polymeric catalysts exhibited a slightly lower activity compared to structurally related nonpolymeric catalysts, they were successfully used in a number of ring-closing metathesis reactions leading to a variety of heterocyclic compounds, including biologically and pharmacologically related analogues of cathepsin K inhibitor and sildenafil (Viagra™). In the last case, a good solubility of a polymeric catalyst in toluene allowed the separation of the product from the catalyst via simple filtration.
Collapse
|
9
|
Fast Initiating Furan-Containing Hoveyda-Type Complexes: Synthesis and Applications in Metathesis Reactions. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new ruthenium complexes with chelating-ether benzylidene ligands bearing a furan moiety were synthesized and characterized, including X-ray crystallography. They initiated fast, also at 0 °C, and were found to be highly active in a variety of ring-closing, ene-yne, and cross-metathesis reactions, including an active pharmaceutical ingredient (API) model, which makes them good candidates for the transformation of complex polyfunctional compounds that require mild reaction conditions.
Collapse
|
10
|
Sytniczuk A, Małecki P, Kajetanowicz A, Grela K. Ruthenium olefin metathesis catalysts bearing two bulky and unsymmetrical NHC ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Adrian Sytniczuk
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw Warsaw Poland
| | - Paweł Małecki
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw Warsaw Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw Warsaw Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw Warsaw Poland
| |
Collapse
|
11
|
Tyszka-Gumkowska A, Purohit VB, Nienałtowski T, Dąbrowski M, Kajetanowicz A, Grela K. Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. iScience 2022; 25:104131. [PMID: 35434568 PMCID: PMC9010768 DOI: 10.1016/j.isci.2022.104131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Olefin metathesis reactions of diverse polyfunctional substrates were conducted in water emulsions using two hydrophobic ruthenium catalysts in the presence of air. Instead of using surfactants to increase the efficiency of the metathesis reaction in water, ultrasound and microwave techniques were tested on a small-scale reaction, whereas conventional heating and mechanical stirring were effective enough to provide high conversion and selectivity on a larger scale. The developed conditions extend known protocols for the aqueous metathesis methodology, utilizing relatively low catalyst loadings and allowing for simple product isolation and purification. The established synthetic protocol was successfully adopted in the large-scale synthesis of a pharmaceutically related product – sildenafil (Viagra) derivative. Sustainable approach for metathesis reaction in water emulsion system on air. Utilization of enabling techniques for boosting metathesis under aqueous conditions. RCM of medically important sildenafil derivative.
Collapse
Affiliation(s)
- Agata Tyszka-Gumkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Vishal B Purohit
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Nienałtowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Polpharma SA Pharmaceutical Works, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Michał Dąbrowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
12
|
Tunalı Z, Sagdic K, Inci F, Öztürk BÖ. Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00058j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A magnetically separable catalyst is developed through encapsulation of mesoporous carbon, HG2 and γ-Fe2O3 within alginate gels. The catalytic showed superior performance in metathesis reactions of hydrophobic olefins in water under air atmosphere.
Collapse
Affiliation(s)
- Zeynep Tunalı
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | - Kutay Sagdic
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Bengi Özgün Öztürk
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| |
Collapse
|
13
|
Monsigny L, Cejas Sánchez J, Piątkowski J, Kajetanowicz A, Grela K. Synthesis and Catalytic Properties of a Very Latent Selenium-Chelated Ruthenium Benzylidene Olefin Metathesis Catalyst. Organometallics 2021; 40:3608-3616. [PMID: 34776582 PMCID: PMC8579520 DOI: 10.1021/acs.organomet.1c00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we describe
a study of the synthesis, characterization,
and catalytic properties of a cis-dichlorido seleno-chelated
Hoveyda–Grubbs type complex (Ru8). Such a complex
has been obtained through a straightforward and high-yielding synthetic
protocol in three steps from the commercially available 2-bromobenzaldehyde
in good overall yield (54%). The catalytic profile, especially the
latency of this complex, has been probed through selected olefin metathesis
reactions such as ring-closing metathesis (RCM), self-cross-metathesis
(self-CM) and ring-opening metathesis polymerization (ROMP). In addition
to its high latency, the selenium Hoveyda-type complex Ru8 exhibits a switchable behavior upon thermal activation. Of interest,
while the corresponding sulfur-chelated Hoveyda type catalyst is reported
to be only activated by heat, the selenium analogue was found to be
active upon both heat and light irradiation.
Collapse
Affiliation(s)
- Louis Monsigny
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joel Cejas Sánchez
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jakub Piątkowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|