1
|
Acharya SS, Parida BB. Synthetic routes to access dicarbonylated aryls and heteroaryls. Org Biomol Chem 2024; 22:8209-8248. [PMID: 39319402 DOI: 10.1039/d4ob01278j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
1,2-Dicarbonyl compounds are privileged functionalities found in natural products, pharmaceuticals, bioactive molecules, and food items, and are important precursors in catalysis, asymmetric synthesis, polymer chemistry and synthesizing functionalized heterocycles. Herein, this comprehensive review focuses on various approaches for synthesizing 1,2-dicarbonylated aryls and heteroaryls in both intermolecular and intramolecular fashion, covering the dicarbonylation of indoles, imidazoheterocycles, indolizines, aminopyrazoles, pyrroloisoquinolines, coumarins, furan, anilines, phenols, anthranils, and benzil synthesis over the last decade (since 2015). Also, the present review highlights the scope and future perspectives of the approach.
Collapse
Affiliation(s)
- Swadhin Swaraj Acharya
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| | - Bibhuti Bhusan Parida
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| |
Collapse
|
2
|
Ghosh S, Koner M, Kunhiraman AA, Baidya M. Free Amine-Directed Redox Neutral Ruthenium(II) Catalysis toward Regioselective Synthesis of Heterobiaryls. Org Lett 2024; 26:2987-2992. [PMID: 38563803 DOI: 10.1021/acs.orglett.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A regioselective coupling of ortho-heteroaryl anilines and 7-oxabenzonorbornadienes has been developed by leveraging free amine-directed redox-neutral Ru(II) catalysis. This protocol facilitates formal C-2 arylation of the indole moiety under mild conditions to offer valuable heterobiaryls in high yields. The reaction displays a broad substrate generality and scalability and retains efficacy in the presence of diverse pharmacophore scaffolds. Moreover, products bearing a free amine group were successfully employed in Mg(NTf2)2-catalyzed double Michael addition cascade, which led to the synthesis of intricate indole- and pyrrole-fused azaheterocycles.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mainak Koner
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anusree A Kunhiraman
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
3
|
Mondal S, Giri CK, Baidya M. Enaminone-directed ruthenium(II)-catalyzed C-H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins. Chem Commun (Camb) 2023; 59:13187-13190. [PMID: 37850468 DOI: 10.1039/d3cc03999d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The weakly coordinating enaminone functionality has been leveraged for a C-H bond activation strategy under ruthenium catalysis and employed in the regioselective annulative coupling of arenes with diazonaphthoquinones, offering polycyclic benzocoumarins in very high yields. The enaminone motif plays a dual role and the protocol operates through a Ru(II)/Ru(IV) catalytic pathway which is amenable to the diversification of various pharmacophore-coupled substrates.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
4
|
Chung E, Kim S, Rakshit A, Singh P, Park J, Jeong T, Kim IS. Rh(III)-Catalyzed C8-Spiroannulation of 1-Aminonaphthalenes with Maleimides. J Org Chem 2023; 88:11227-11239. [PMID: 37462908 DOI: 10.1021/acs.joc.3c01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The rhodium(III)-catalyzed C8-spiroannulation of 1-aminonaphthalenes with maleimides is described herein. Initially formed C8-alkenylated 1-aminonaphthalenes can intercept nucleophilic 1-amino groups through the intramolecular aza-Michael reaction, resulting in the formation of spirofused tetracyclic frameworks. This protocol displayed a wide substrate scope and a broad functional group compatibility. The synthetic utility of this process is demonstrated by the gram-scale synthesis, late-stage modification, and synthetic transformations.
Collapse
Affiliation(s)
- Eunjae Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Amitava Rakshit
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaewook Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Dattatri, Kumar Reddy Singam M, Vavilapalli S, Babu Nanubolu J, Sridhar Reddy M. Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual C-H Functionalization/Dual Oxidative Cyclization. Angew Chem Int Ed Engl 2023; 62:e202215825. [PMID: 36583268 DOI: 10.1002/anie.202215825] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The C-H functionalization strategy provides access to valuable molecules that previously required convoluted synthetic attempts. Dual C-H unsymmetrical functionalization, with a single bifunctional reagent, is an effective tactic. Propargyl alcohols (PAs), despite containing a reactive C≡C bond, have not been explored as building blocks via oxidative cleavage. Annulations via C-H activation are a versatile and synthetically attractive strategy. We disclose PA as a new bifunctional reagent for unsymmetrical dual C-H functionalization of biphenylamine for regioselectively annulated outcomes. On tuning the conditions, the annulation bifurcated towards an unusual dual oxidative cyclization. This method accommodates a wide range of PAs and showcases late-stage diversification of some natural products.
Collapse
Affiliation(s)
- Dattatri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suresh Vavilapalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
6
|
Yu C, Xu Y, Zhang X, Fan X. Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions. Org Lett 2022; 24:9473-9478. [PMID: 36524816 DOI: 10.1021/acs.orglett.2c03952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Presented herein is a condition-controlled selective synthesis of pyrazolonyl spirodihydroquinolines or pyrazolonyl spiroindolines through formal [5 + 1] or [4 + 1] spiroannulation of 2-alkenylanilines with diazopyrazolones. Mechanistically, the formation of the title products involves initial generation of a pyrazolonyl spiro-fused seven-membered ruthenacycle species serving as a key intermediate through Ru(II)-catalyzed C-H/N-H bonds metalation, carbene formation, and its migratory insertion. When the reaction is carried out under air, the key intermediate undergoes reductive elimination to afford spirodihydroquinoline. When the reaction is run under argon, the key intermediate undergoes protonation and intramolecular nucleophilic addition to furnish spiroindoline. This work provides an atom-economical protocol for the effective functionalization of alkenyl C(sp2)-H bond, allowing rapid and selective assembly of valuable spiroscaffolds with a broad range of substrates.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Wu J, Sun P, Hong Y, Yang H, Xie M, Zhang J. Palladium-catalyzed interannular C-H amination of biaryl amines. Chem Commun (Camb) 2022; 58:13620-13623. [PMID: 36408627 DOI: 10.1039/d2cc05129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A palladium-catalyzed interannular C-H amination of biaryl amines with O-benzoylhydroxylamines is reported. This reaction undergoes smoothly with operational practicality and good tolerance of functional groups, thereby providing a concise synthesis of 2,2'-diaminobiaryls. Moreover, the readily accessible scale-up synthesis and the ability to transform the products into structurally diverse N-containing heterocycles demonstrate the synthetic potential of this catalytic protocol.
Collapse
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Pengpeng Sun
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yuwen Hong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
8
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
9
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
10
|
Yao H, Zhong X, Wang B, Lin S, Yan Z. Cyanomethylation of the Benzene Rings and Pyridine Rings via Direct Oxidative Cross-Dehydrogenative Coupling with Acetonitrile. Org Lett 2022; 24:2030-2034. [PMID: 35261234 DOI: 10.1021/acs.orglett.2c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and efficient approach for the amine-directed dehydrogenative C(sp2)-C(sp3) coupling of arylamines with acetonitrile was reported by using FeCl2 as the catalyst. Substituted anilines, aminopyridines, naphthylamines, and some nitrogen-containing heterocyclic arylamines react with inactive acetonitrile to form the corresponding arylacetonitriles in moderate to good yields. This protocol features nontoxic iron catalysis, efficient atom economy, nonprefunctionalized starting materials, good regioselectivity, and excellent compatibility of functional groups and aromatic rings, providing a novel, straightforward, and green approach toward arylacetonitriles.
Collapse
Affiliation(s)
- Hua Yao
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiaoyang Zhong
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Bingqing Wang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Sen Lin
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Zhaohua Yan
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
11
|
Zhang ZZ, Li Y, Shi BF. Cp*Rh(III)-catalyzed and solvent-controlled tunable [4+1]/[4+3] annulation for the divergent assembly of dihydrobenzo[cd]indoles and dihydronaphtho[1,8-bc]azepines. Org Chem Front 2022. [DOI: 10.1039/d2qo00073c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemo- and regioselectively Cp*Rh-catalyzed tunable [4+1]/[4+3] cyclization of free 1-naphthylamines with propargyl carbonates has been accomplished by regulating the reaction solvents. The reaction allowed a variety of dihydrobenzo[cd]indoles and dihydronaphtho[1,8-bc]azepines...
Collapse
|
12
|
Ma C, Wang Y, Chen G, Li J, Jiang Y, Zhang X, Fan X. Divergent construction of 3-(indol-2-yl)succinimide/maleimide and fused benzodiazepine skeletons from 2-(1 H-indol-1-yl)anilines and maleimides. Org Chem Front 2022. [DOI: 10.1039/d2qo00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent construction of 3-(indol-2-yl)succinimide/maleimide and indoyl/pyrrolyl fused benzodiazepine skeletons from 2-(1H-indol-1-yl)anilines and maleimides is presented.
Collapse
Affiliation(s)
- Chunhua Ma
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingyi Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Giri CK, Dana S, Baidya M. Ruthenium(II)-catalyzed C-H activation and (4+2) annulation of aromatic hydroxamic acid esters with allylic amides. Chem Commun (Camb) 2021; 57:10536-10539. [PMID: 34553196 DOI: 10.1039/d1cc04422b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A (4+2) annulation under Ru(II)-catalysis is reported using aromatic hydroxamic acid esters as the oxidizing directing group and allylic amides as unactivated olefin coupling partners, delivering a wide variety of aminomethyl isoquinolinones in good to excellent yields. This annulation is distinctive as allylic congeners typically result in allylation and not the annulation. Late-stage derivatization of a bioactive synthetic bile acid has been showcased.
Collapse
Affiliation(s)
- Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|