1
|
Maltseva PY, Plotnitskaya NA, Krivoruchko AV, Beletskiy AV, Rakitin AL, Mardanov AV, Ivshina IB. Bioinformatics Analysis of the Genome of Rhodococcus rhodochrous IEGM 1362, an (-)-Isopulegol Biotransformer. Genes (Basel) 2024; 15:992. [PMID: 39202353 PMCID: PMC11354180 DOI: 10.3390/genes15080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
A genome of Rhodococcus rhodochrous IEGM 1362 was sequenced and annotated. This strain can transform monoterpene alcohol (-)-isopulegol with the formation of two novel pharmacologically promising metabolites. Nine genes encoding cytochrome P450, presumably involved in (-)-isopulegol transformation, were found in the genome of R. rhodochrous IEGM 1362. Primers and PCR conditions for their detection were selected. The obtained data can be used for the further investigation of genes encoding enzymes involved in monoterpene biotransformation.
Collapse
Affiliation(s)
- Polina Yu. Maltseva
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia; (P.Y.M.); (N.A.P.); (A.V.K.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Natalia A. Plotnitskaya
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia; (P.Y.M.); (N.A.P.); (A.V.K.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Anastasiia V. Krivoruchko
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia; (P.Y.M.); (N.A.P.); (A.V.K.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Aleksey V. Beletskiy
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 7-1 Prosp. 60-let Oktyabrya, 117312 Moscow, Russia; (A.V.B.); (A.L.R.); (A.V.M.)
| | - Andrey L. Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 7-1 Prosp. 60-let Oktyabrya, 117312 Moscow, Russia; (A.V.B.); (A.L.R.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 7-1 Prosp. 60-let Oktyabrya, 117312 Moscow, Russia; (A.V.B.); (A.L.R.); (A.V.M.)
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia; (P.Y.M.); (N.A.P.); (A.V.K.)
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 7-1 Prosp. 60-let Oktyabrya, 117312 Moscow, Russia; (A.V.B.); (A.L.R.); (A.V.M.)
| |
Collapse
|
2
|
Le TM, Njangiru IK, Vincze A, Zupkó I, Balogh GT, Szakonyi Z. Synthesis and medicinal chemical characterisation of antiproliferative O, N-functionalised isopulegol derivatives. RSC Adv 2024; 14:18508-18518. [PMID: 38867736 PMCID: PMC11168086 DOI: 10.1039/d4ra03467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Benzylation of isopulegol furnished O-benzyl-protected isopulegol, which was transformed into aminodiols via epoxidation followed by ring opening of the corresponding epoxides and subsequent hydrogenolysis. On the other hand, (-)-isopulegol was oxidised to a diol, which was then converted into dibenzyl-protected diol derivatives. The products were then transformed into aminotriols by using a similar method. The antiproliferative activity of aminodiol and aminotriol derivatives was examined. In addition, structure-activity relationships were also explored from the aspects of substituent effects and stereochemistry on the aminodiol and aminotriol systems. The drug-likeness of the compounds was assessed by in silico and experimental physicochemical characterisations, completed by kinetic aqueous solubility and in vitro intestinal-specific parallel artificial membrane permeability assay (PAMPA-GI) measurements.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
- HUN-REN-SZTE Stereochemistry, Research Group, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
| |
Collapse
|
3
|
Athanasiadou T, Bagkavou GG, Karagianni P, Stathakis CI. Exploring the Chemical Space Accessed by Chiral Pool Terpenes. The (-)-Caryophyllene Oxide Paradigm. Org Lett 2024; 26:2897-2901. [PMID: 38552107 PMCID: PMC11187627 DOI: 10.1021/acs.orglett.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Terpenes represent a flourishing source of structural motifs that can be converted into several more complex architectures. Realization of such transformations in a concise and efficient manner adds great value to the starting material. Herein, we study the case of (-)-caryophyllene oxide and convert it into natural sesquiterpenoids (rumphellolide K, rumphellaone A, and antipacid A), thus expanding the chemical space accessed by its privilege structure. Our semisyntheses are short and rely on reagent-dictated stereo- and chemoselectivity.
Collapse
Affiliation(s)
| | | | - Polymnia Karagianni
- Department of Chemistry, Aristotle
University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Christos I. Stathakis
- Department of Chemistry, Aristotle
University of Thessaloniki, Thessaloniki 541 24, Greece
| |
Collapse
|
4
|
Háznagy MB, Csámpai A, Ugrai I, Molnár B, Haukka M, Szakonyi Z. Stereoselective Synthesis and Catalytical Application of Perillaldehyde-Based 3-Amino-1,2-diol Regioisomers. Int J Mol Sci 2024; 25:4325. [PMID: 38673908 PMCID: PMC11050431 DOI: 10.3390/ijms25084325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A library of regioisomeric monoterpene-based aminodiols was synthesised and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The synthesis of the first type of aminodiols was achieved starting from (-)-8,9-dihydroperillaldehyde via reductive amination, followed by Boc protection and dihydroxylation with the OsO4/NMO system. Separation of formed stereoisomers resulted in a library of aminodiol diastereoisomers. The library of regioisomeric analogues was obtained starting from (-)-8,9-dihydroperillic alcohol, which was transformed into a mixture of allylic trichloroacetamides via Overman rearrangement. Changing the protecting group to a Boc function, the protected enamines were subjected to dihydroxylation with the OsO4/NMO system, leading to a 71:16:13 mixture of diastereoisomers, which were separated, affording the three isomers in isolated form. The obtained primary aminodiols were transformed into secondary derivatives. The regioselectivity of the ring closure of the N-benzyl-substituted aminodiols with formaldehyde was also investigated, resulting in 1,3-oxazines in an exclusive manner. To explain the stability difference between diastereoisomeric 1,3-oxazines, a series of comparative theoretical modelling studies was carried out. The obtained potential catalysts were applied in the reaction of aromatic aldehydes and diethylzinc with moderate to good enantioselectivities (up to 94% ee), whereas the opposite chiral selectivity was observed between secondary aminodiols and their ring-closed 1,3-oxazine analogues.
Collapse
Affiliation(s)
- Márton Benedek Háznagy
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary;
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary;
| | - Antal Csámpai
- Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary;
| | - Imre Ugrai
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary;
| | - Barnabás Molnár
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7-8, H-6720 Szeged, Hungary;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland;
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary;
| |
Collapse
|
5
|
Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. C-H Bonds as Functional Groups: Simultaneous Generation of Multiple Stereocenters by Enantioselective Hydroxylation at Unactivated Tertiary C-H Bonds. J Am Chem Soc 2023; 145:15742-15753. [PMID: 37431886 PMCID: PMC10651061 DOI: 10.1021/jacs.2c10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 07/12/2023]
Abstract
Enantioselective C-H oxidation is a standing chemical challenge foreseen as a powerful tool to transform readily available organic molecules into precious oxygenated building blocks. Here, we describe a catalytic enantioselective hydroxylation of tertiary C-H bonds in cyclohexane scaffolds with H2O2, an evolved manganese catalyst that provides structural complementary to the substrate similarly to the lock-and-key recognition operating in enzymatic active sites. Theoretical calculations unveil that enantioselectivity is governed by the precise fitting of the substrate scaffold into the catalytic site, through a network of complementary weak non-covalent interactions. Stereoretentive C(sp3)-H hydroxylation results in a single-step generation of multiple stereogenic centers (up to 4) that can be orthogonally manipulated by conventional methods providing rapid access, from a single precursor to a variety of chiral scaffolds.
Collapse
Affiliation(s)
- Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Guillem Casadevall
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| |
Collapse
|
6
|
Ivshina IB, Luchnikova NA, Maltseva PY, Ilyina IV, Volcho KP, Gatilov YV, Korchagina DV, Kostrikina NA, Sorokin VV, Mulyukin AL, Salakhutdinov NF. Biotransformation of (–)-Isopulegol by Rhodococcus rhodochrous. Pharmaceuticals (Basel) 2022; 15:ph15080964. [PMID: 36015112 PMCID: PMC9412403 DOI: 10.3390/ph15080964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of actinobacteria of the genus Rhodococcus to biotransform the monoterpenoid (–)-isopulegol has been established for the first time. R. rhodochrous strain IEGM 1362 was selected as a bacterium capable of metabolizing (–)-isopulegol to form new, previously unknown, 10-hydroxy (2) and 10-carboxy (3) derivatives, which may presumably have antitumor activity and act as respiratory stimulants and cancer prevention agents. In the experiments, optimal conditions were selected to provide the maximum target catalytic activity of rhodococci. Using up-to-date (TEM, AFM-CLSM, and EDX) and traditional (cell size, roughness, and zeta potential measurements) biophysical and microbiological methods, it was shown that (–)-isopulegol and halloysite nanotubes did not negatively affect the bacterial cells. The data obtained expand our knowledge of the biocatalytic potential of rhodococci and their possible involvement in the synthesis of pharmacologically active compounds from plant derivatives.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
- Correspondence: ; Tel.: +7-(342)-2808114; Fax: +7-(342)-2809211
| | - Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
| | - Polina Yu. Maltseva
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
| | - Irina V. Ilyina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Yurii V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Nadezhda A. Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Vladimir V. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Andrey L. Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| |
Collapse
|