1
|
Dinda TK, Manna A, Nayek P, Mandal B, Mal P. Ultrasmall CsPbBr 3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49411-49427. [PMID: 39238429 DOI: 10.1021/acsami.4c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The precise synthesis of ultrasmall, monodisperse CsPbBr3 nanocrystals is crucial due to their enhanced photophysical properties resulting from strong quantum confinement effects. Traditional methods struggle with size control, complicating synthesis. Although CsPbBr3 nanocrystals find applications in LEDs and photovoltaics, their use in photocatalysis for organic reactions remains limited. Our study introduces ultrasmall TBIA-CsPbBr3 nanocrystals (∼5.6 nm), synthesized via a three-precursor hot injection method using tribromoisocyanuric acid (TBIA) as a bromine precursor for the first time. These nanocrystals exhibit a near-unity photoluminescence quantum yield (PLQY) of 0.99 and an elevated oxidation potential of +1.80 V. We demonstrate their efficacy as recyclable heterogeneous photocatalysts in a one-pot, 100% E-selective, anti-Markovnikov sulfinylsulfonation of terminal alkynes under visible light, achieving a high product conversion rate (PCR) of 62,500 μmol g-1 h-1 and recyclability for up to five cycles. Density functional theory (DFT) calculations support the exclusive formation of the E-isomer. TBIA-CsPbBr3 outperforms other CsPbBr3 perovskites in photocatalysis, with superior efficiency attributed to their extended excited-state lifetime and higher surface area, which accelerates the organic transformation process.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Anupam Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Bikash Mandal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
2
|
Yadav A, Ambule MD, Srivastava AK. Catalyst-free anti-Markovnikov hydroamination and hydrothiolation of vinyl heteroarenes in aqueous medium: an improved process towards centhaquine. Org Biomol Chem 2024; 22:1721-1726. [PMID: 38318984 DOI: 10.1039/d3ob02046k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Catalyst-free hydroamination and hydrothiolation of alkenes have been achieved in an aqueous medium. The anti-Markovnikov addition works efficiently in suspended water at room temperature and allows straightforward access to centhaquine, a drug used for the management of hypovolemic shocks in critically ill patients, and its derivatives. Various primary and secondary amines, thiols, and hydrazides were successfully reacted with a number of heteroaryl/aryl-alkenes. The scalability of the process has been demonstrated by synthesizing centhaquine at a 19.65 g scale. A comparative analysis of the present process with previous approaches has been provided on the basis of green chemistry metrics.
Collapse
Affiliation(s)
- Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mayur D Ambule
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Markwitz M, Labrzycki K, Azcune L, Landa A, Kuciński K. Access to thioethers from thiols and alcohols via homogeneous and heterogeneous catalysis. Sci Rep 2023; 13:20624. [PMID: 37996490 PMCID: PMC10667213 DOI: 10.1038/s41598-023-47938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
A metal-free dehydrative thioetherification method has been reported, enabling the conversion of various alcohols and thiols into thioethers. By employing triflic acid as a catalyst or utilizing a recyclable NAFION® superacid catalyst, these methods significantly improve the efficiency and practicality of sulfide preparation.
Collapse
Affiliation(s)
- Martyna Markwitz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Klaudiusz Labrzycki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Laura Azcune
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Aitor Landa
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
5
|
Dinda TK, Kabir SR, Mal P. Stereoselective Synthesis of Z-Styryl Sulfides from Nucleophilic Addition of Arylacetylenes and Benzyl Thiols. J Org Chem 2023; 88:10070-10085. [PMID: 37406245 DOI: 10.1021/acs.joc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The stereoselective synthesis of Z-anti-Markovnikov styryl sulfides via an anionic thiolate-alkyne addition reaction was achieved when the terminal alkynes and benzyl mercaptans were reacted using tBuOLi (0.5 equiv) in EtOH under ambient conditions. Exclusive stereoselectivity (ca. 100%) was achieved by stereoelectronic control via anti-periplanar and anti-Markovnikov addition of benzylthiolates to phenylacetylenes. Solvolysis of lithium thiolate ion pairs in ethanol significantly suppresses the competing formation of the E-isomer. A remarkable enhancement of the Z-selectivity under a longer reaction time was observed.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Syed Ramizul Kabir
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
6
|
Stachowiak-Dłużyńska H, Kuciński K, Broniarz K, Szafoni E, Gruszczyński M, Lewandowski D, Consiglio G, Hreczycho G. Access to germasiloxanes and alkynylgermanes mediated by earth-abundant species. Sci Rep 2023; 13:5618. [PMID: 37024548 PMCID: PMC10079689 DOI: 10.1038/s41598-023-32172-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
The reactions between silanols or terminal acetylenes with alkynylgermanes have been accomplished using potassium bis(trimethylsilyl)amide as the catalyst. This strategy has provided an entry point into various organogermanes including germasiloxanes and alkynylgermanes. Remarkably, not only KHMDS but also simple bases such as KOH can serve as efficient catalysts in this process.
Collapse
Affiliation(s)
- Hanna Stachowiak-Dłużyńska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Konstancja Broniarz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Ewelina Szafoni
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Marcin Gruszczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Dariusz Lewandowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università degli studi di Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Kuciński K, Hreczycho G. Silicon-nitrogen bond formation via dealkynative coupling of amines with bis(trimethylsilyl)acetylene mediated by KHMDS. Chem Commun (Camb) 2022; 58:11386-11389. [PMID: 36128699 DOI: 10.1039/d2cc04413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic synthesis of silylamines mediated by s- and p-block catalysts is largely underdeveloped. Herein, commercially available potassium bis(trimethylsilyl)amide serves as an efficient alternative to transition metal complexes. N-H/Si-C dealkynative coupling was achieved by means of user-friendly main-group catalysis with ample substrate scope and high chemoselectivity.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
8
|
Kuciński K, Gruszczyński M, Hreczycho G. Ru‐catalyzed Formation of Thiosilanes and Selenosilanes using Dichalcogenides as a User‐Friendly Alternative to Thiols and Selenols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Krzysztof Kuciński
- Adam Mickiewicz University in Poznań Faculty of Chemistry Umultowska 89b 61-614 Poznań POLAND
| | - Marcin Gruszczyński
- Adam Mickiewicz University Faculty of Chemistry: Uniwersytet im Adama Mickiewicza w Poznaniu Wydzial Chemii Faculty of Chemistry POLAND
| | - Grzegorz Hreczycho
- Adam Mickiewicz University Faculty of Chemistry: Uniwersytet im Adama Mickiewicza w Poznaniu Wydzial Chemii Faculty of Chemistry POLAND
| |
Collapse
|
9
|
Horsley Downie TM, Mahon MF, Lowe JP, Bailey RM, Liptrot DJ. A Copper(I) Platform for One-Pot P–H Bond Formation and Hydrophosphination of Heterocumulenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Bath BA2 7AY U.K
| | - John P. Lowe
- Department of Chemistry, University of Bath, Bath BA2 7AY U.K
| | - Rowan M. Bailey
- Department of Chemistry, University of Bath, Bath BA2 7AY U.K
| | | |
Collapse
|
10
|
Kuciński K, Hreczycho G. Transition metal‐free catalytic C−H silylation of terminal alkynes with bis(trimethylsilyl)acetylene initiated by KHMDS. ChemCatChem 2022. [DOI: 10.1002/cctc.202200794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krzysztof Kuciński
- Adam Mickiewicz University in Poznań Faculty of Chemistry Umultowska 89b 61-614 Poznań POLAND
| | - Grzegorz Hreczycho
- Adam Mickiewicz University: Uniwersytet im Adama Mickiewicza w Poznaniu Faculty of Chemistry POLAND
| |
Collapse
|