1
|
Nguyen OTK, Nguyen VH, Linh NX, Doan MQ, Hoang LAT, Lee T, Nguyen TD. Nanostructured MnO x /g-C 3N 4 for photodegradation of sulfamethoxazole under visible light irradiation. RSC Adv 2024; 14:36378-36389. [PMID: 39545170 PMCID: PMC11561708 DOI: 10.1039/d4ra05996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
The effectiveness of g-C3N4 as photocatalyst is hindered by the rapid recombination of photo-generated electron/hole pairs. To improve its photocatalytic performance, the incorporation of g-C3N4 with co-catalysts can promote charge separation efficiency and enhance redox capabilities. In our study, a two-step approach involving calcination and solvothermal method was utilized to fabricate a proficient MnO x /g-C3N4 heterojunction photocatalyst with high photocatalytic activity. MnO x is effective at capturing holes to impede the recombination of electron/hole pairs. The MnO x /g-C3N4 composite shows a notable improvement in photocatalytic degradation of SMX, obtaining an 85% degradation rate, surpassing that of pure g-C3N4. Furthermore, the MnO x /g-C3N4 composite exhibits remarkable and enduring catalytic degradation capabilities for sulfamethoxazole (SMX), even after four consecutive reuse cycles. The intermediates produced in the MnO x /g-C3N4 system are found to be less hazardous to common aquatic creatures such as fish, daphnids, and green algae when compared to SMX. With its high tolerance, exceptional degradation ability, and minimal ecological risk, the MnO x /g-C3N4 composite emerges as a promising candidate for eliminating antibiotics from wastewater resources.
Collapse
Affiliation(s)
- Oanh T K Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Nong Xuan Linh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Minh Que Doan
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Lan-Anh T Hoang
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Wan J, Li G, Guo Z, Qin H. Thermal transport in C 6N 7monolayer: a machine learning based molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:025301. [PMID: 39348869 DOI: 10.1088/1361-648x/ad81a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
The successful synthesis of a novel C6N7carbon nitride monolayer offers expansive prospects for applications in the fields of semiconductors, sensors, and gas separation technologies, in which the thermal transport properties of C6N7are crucial for optimizing the functionality and reliability of these applications. In this work, based on our developed machine learning potential (MLP), molecular dynamics (MD) simulations including homogeneous non-equilibrium, non-equilibrium, and their respective spectral decomposition methods are performed to investigate the effects of phonon transport, temperature, and length on the thermal conductivity of C6N7monolayer. Our results reveal that low-frequency and in-plane phonon modes dominate the thermal conductivity. Notably, thermal conductivity decreases with an increase in temperature due to temperature-induced increase in phonon-phonon scattering of in-plane phonon modes, while it increases with an extension in sample length. Our findings based on MD simulations with MLP contribute new insights into the lattice thermal conductivity of holey carbon nitride compounds, which is helpful for the development of next-generation electronic and photonic devices.
Collapse
Affiliation(s)
- Jing Wan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Guanting Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zeyu Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Huasong Qin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
3
|
Sasikala V, Sarala S, Karthik P, Prakash N, Mukkannan A. Cellulose acetate membranes loaded with WO 3/g-C 3N 4: a synergistic approach for effective photocatalysis. NANOTECHNOLOGY 2024; 35:475401. [PMID: 39168138 DOI: 10.1088/1361-6528/ad71d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
The objective of this study is to develop an efficient, easily recoverable membrane-based photocatalyst for removing organic pollutants from aqueous solutions. This study documents the effective synthesis of a novel composite photocatalyst comprising WO3/g-C3N4(WCN) loaded onto cellulose acetate (CA). The physicochemical properties of the synthesized nanocomposites were validated using a range of techniques, including Fourier transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy, and UV-visible diffuse reflectance spectroscopy. SEM analysis revealed that the WCN particles exhibited a well-decorated arrangement on the CA surface in the form of spherical particles. The successfully synthesized film was utilized as a potential adsorbent for removing organic pollutants such as Rhodamine B (Rh-B) and Methylene blue (MB) from aqueous solutions under UV light illumination. The results showcased the significant potential of the WCN@CA nanocomposite, achieving a remarkable 83% and 85% efficiency in eliminating Rh-B and MB. The pseudo-first-order kinetic models were found to be appropriate for both dye adsorption onto the WCN@CA nanocomposite. The WCN@CA catalyst, capable of being reused five times without significant loss of efficiency, shows great potential for decomposing toxic organic pollutants. The novelty of this work lies in the innovative combination of WCN with CA, resulting in a highly efficient and reusable photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Velusamy Sasikala
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India
| | - Sakarapani Sarala
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India
| | - Palani Karthik
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India
| | - Natarajan Prakash
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India
| | - Azhagurajan Mukkannan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India
| |
Collapse
|
4
|
Chen G, Zhou Z, Li B, Lin X, Yang C, Fang Y, Lin W, Hou Y, Zhang G, Wang S. S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO 3 nanoparticles for photocatalytic CO 2 reduction. J Environ Sci (China) 2024; 140:103-112. [PMID: 38331492 DOI: 10.1016/j.jes.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 02/10/2024]
Abstract
Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.
Collapse
Affiliation(s)
- Gongjie Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Ziruo Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Bifang Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Xiahui Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China.
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China.
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
5
|
Gomathi A, Priyadharsan A, Handayani M, Kumar KAR, Saranya K, Kumar AS, Srividhya B, Murugesan K, Maadeswaran P. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO 2/Co 3O 4/g-C 3N 4 ternary photocatalysts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124125. [PMID: 38461561 DOI: 10.1016/j.saa.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
In this research work, we have successfully synthesized the CeO2/Co3O4/g-C3N4 ternary nanocomposite for hydrothermal method for photocatalytic applications. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy TEM, Photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer- Emmett-Teller (BET) and Ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. As per the optical spectroscopic investigations CeO2/Co3O4/g-C3N4 ternary nanocomposite exhibited the high optical absorption range and its band gap is reduced from 2.95 eV to1.83 eV. The PL spectra showed the lowered emission peak intensity of ternary nanocomposite which is revealed that the better charge separation and slow recombination of electron hole pairs. The highest photocatalytic degradation efficiency of CeO2/Co3O4/g-C3N4 ternary nanocomposite showed 93 % and 86 % towards the pollutant methylene blue and Rhodamine B. Moreover, photodegradation of the pollutants followed pseudo-first order kinetics with a very high-rate constant of 0.02211 min-1 and 0.017756 min-1. Additionally, the ternary nano catalyst was delivered the remarkable stability performance even after five cycles. This research may provide a low-cost approach for synthesized visible light responsive catalysts for use in environmental remediation applications.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Arumugam Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - K A Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - K Saranya
- Department of Physics, Government College of Engineering, Thanjavur 613402, Tamil Nadu, India
| | - A Senthil Kumar
- Department of Applied Science, PSG College of Technology, Coimbatore 641004, Tamilnadu, India
| | - Balakrishnan Srividhya
- Department of Chemistry, KSR College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - K Murugesan
- Department of Environmental Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
6
|
Abid MZ, Tanveer A, Rafiq K, Rauf A, Jin R, Hussain E. Proceeding of catalytic water splitting on Cu/Ce@g-C 3N 4 photocatalysts: an exceptional approach for sunlight-driven hydrogen generation. NANOSCALE 2024; 16:7154-7166. [PMID: 38502569 DOI: 10.1039/d4nr00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Increasing energy demands and environmental problems require carbon-free and renewable energy generation systems. For this purpose, we have synthesized efficient photocatalysts (i.e., g-C3N4, Cu@g-C3N4, Ce@g-C3N4 and Cu/Ce@g-C3N4) for H2 evolution from water splitting. Their optical, structural and electrochemical properties were investigated by UV-Vis-DRS, PL, XRD, FTIR, Raman and EIS methods. Their surface morphologies were evaluated by AFM and SEM analyses. Their chemical characteristics, compositions and stability were assessed using XPS, EDX and TGA techniques. Photoreactions were performed in a quartz reactor (150 mL/Velp-UK), whereas hydrogen generation activities were monitored using a GC-TCD (Shimadzu-2014/Japan). The results depicted that Cu/Ce@g-C3N4 catalysts are the most active catalysts that deliver 23.94 mmol g-1 h-1 of H2. The higher rate of H2 evolution was attributed to the active synergism between Ce and Cu metals and the impact of surface plasmon electrons (SPEs) of Cu that were produced during the photoreaction. The rate of H2 production was optimized by controlling various factors, including the catalyst amount, light intensity, pH, and temperature of the reaction mixture. It has been concluded that the current study holds promise to replace the conventional and costly catalysts used for hydrogen generation technologies.
Collapse
Affiliation(s)
- Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Aysha Tanveer
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania-15213, USA
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania-15213, USA
| |
Collapse
|
7
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
8
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
9
|
Chen X, Pan WG, Hong LF, Hu X, Wang J, Bi ZX, Guo RT. Ti 3 C 2 -modified g-C 3 N 4 /MoSe 2 S-Scheme Heterojunction with Full-Spectrum Response for CO 2 Photoreduction to CO and CH 4. CHEMSUSCHEM 2023; 16:e202300179. [PMID: 37041127 DOI: 10.1002/cssc.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Energy shortage and global warming caused by the extensive use of fossil fuels are urgent problems to be solved at present. Photoreduction of CO2 is considered to be a feasible solution. The ternary composite catalyst g-C3 N4 /Ti3 C2 /MoSe2 was synthesized by hydrothermal method, and its physical and chemical properties were studied by an array of characterization and tests. In addition, the photocatalytic performance of this series of catalysts under full spectrum irradiation was also tested. It is found that the CTM-5 sample has the best photocatalytic activity, and the yields of CO and CH4 are 29.87 and 17.94 μmol g-1 h-1 , respectively. This can be ascribed to the favorable optical absorption performance of the composite catalyst in the full spectrum and the establishment of S-scheme charge transfer channel. The formation of heterojunctions can effectively promote charge transfer. The addition of Ti3 C2 materials provides plentiful active sites for CO2 reaction, and its superior electrical conductivity is also favorable for the migration of photogenerated electrons.
Collapse
Affiliation(s)
- Xin Chen
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| | - Long-Fei Hong
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xing Hu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Juan Wang
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Zhe-Xu Bi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Negro P, Cesano F, Casassa S, Scarano D. Combined DFT-D3 Computational and Experimental Studies on g-C 3N 4: New Insight into Structure, Optical, and Vibrational Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103644. [PMID: 37241276 DOI: 10.3390/ma16103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed "melon-like" framework.
Collapse
Affiliation(s)
- Paolo Negro
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Federico Cesano
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Silvia Casassa
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Domenica Scarano
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
11
|
Dihan MR, Abu Nayeem SM, Roy H, Islam MS, Islam A, Alsukaibi AKD, Awual MR. Healthcare waste in Bangladesh: Current status, the impact of Covid-19 and sustainable management with life cycle and circular economy framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162083. [PMID: 36764546 PMCID: PMC9908568 DOI: 10.1016/j.scitotenv.2023.162083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 05/09/2023]
Abstract
COVID-19 has accelerated the generation of healthcare (medical) waste throughout the world. Developing countries are the most affected by this hazardous and toxic medical waste due to poor management systems. In recent years, Bangladesh has experienced increasing medical waste generation with estimated growth of 3 % per year. The existing healthcare waste management in Bangladesh is far behind the sustainable waste management concept. To achieve an effective waste management structure, Bangladesh has to implement life cycle assessment (LCA) and circular economy (CE) concepts in this area. However, inadequate data and insufficient research in this field are the primary barriers to the establishment of an efficient medical waste management systen in Bangladesh. This study is introduced as a guidebook containing a comprehensive overview of the medical waste generation scenario, management techniques, Covid-19 impact from treatment to testing and vaccination, and the circular economy concept for sustainable waste management in Bangladesh. The estimated generation of medical waste in Bangladesh without considering the surge due to Covid-19 and other unusual medical emergencies would be approximately 50,000 tons (1.25 kg/bed/day) in 2025, out of which 12,435 tons were predicted to be hazardous waste. However, our calculation estimated that a total of 82,553, 168.4, and 2300 tons of medical waste was generated only from handling of Covid patients, test kits, and vaccination from March 2021 to May 2022. Applicability of existing guidelines, and legislation to handle the current situation and feasibility of LCA on medical waste management system to minimize environmental impact were scrutinized. Incineration with energy recovery and microwave sterilization were found to be the best treatment techniques with minimal environmental impact. A circular economy model with the concept of waste minimizaton, and value recovery was proposed for sustainable medical waste management. This study suggests proper training on healthcare waste management, proposing strict regulations, structured research allocation, and implementation of public-private partnerships to reduce, and control medical waste generation for creating a sustainable medical waste management system in Bangladesh.
Collapse
Affiliation(s)
- Musfekur Rahman Dihan
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - S M Abu Nayeem
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh; Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh.
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | | | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia; Materials Science and Research Center, Japan AtomicEnergy Agency (JAEA), Hyogo 679-5148, Japan.
| |
Collapse
|
12
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
13
|
Recent Advances in g-C 3N 4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023; 28:molecules28010432. [PMID: 36615622 PMCID: PMC9823828 DOI: 10.3390/molecules28010432] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4), with facile synthesis, unique structure, high stability, and low cost, has been the hotspot in the field of photocatalysis. However, the photocatalytic performance of g-C3N4 is still unsatisfactory due to insufficient capture of visible light, low surface area, poor electronic conductivity, and fast recombination of photogenerated electron-hole pairs. Thus, different modification strategies have been developed to improve its performance. In this review, the properties and preparation methods of g-C3N4 are systematically introduced, and various modification approaches, including morphology control, elemental doping, heterojunction construction, and modification with nanomaterials, are discussed. Moreover, photocatalytic applications in energy and environmental sustainability are summarized, such as hydrogen generation, CO2 reduction, and degradation of contaminants in recent years. Finally, concluding remarks and perspectives on the challenges, and suggestions for exploiting g-C3N4-based photocatalysts are presented. This review will deepen the understanding of the state of the art of g-C3N4, including the fabrication, modification, and application in energy and environmental sustainability.
Collapse
|
14
|
Hayat A, Sohail M, Anwar U, Taha TA, Qazi HIA, Amina, Ajmal Z, Al-Sehemi AG, Algarni H, Al-Ghamdi AA, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. A Targeted Review of Current Progress, Challenges and Future Perspective of g-C 3 N 4 based Hybrid Photocatalyst Toward Multidimensional Applications. CHEM REC 2023; 23:e202200143. [PMID: 36285706 DOI: 10.1002/tcr.202200143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Indexed: 01/21/2023]
Abstract
The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Usama Anwar
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Amina
- Department of Physics, Bacha Khan University Charsadda, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| | - Abdullah G Al-Sehemi
- Research Center for Adv. Mater. Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Adv. Mater. Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arkom Palamanit
- Energy Technol. Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
15
|
Mansurov RR, Pavlova IA, Safronov AP. Adhesion of Polymer to TiO
2
Particles Decreases Photocatalytic Activity of Polyelectrolyte Hydrogel Photocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Irina A. Pavlova
- Institute of Electrophysics 106 Amundsen Str. 620016 Yekaterinburg, RF
| | | |
Collapse
|
16
|
Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, Al-Sehemi AG, Algarni H, Amin MA, Aqeel Sarwar M, Nawawi WI, Palamanit A, Orooji Y, Ajmal Z. Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. CHEM REC 2022; 22:e202200097. [PMID: 36103617 DOI: 10.1002/tcr.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - A Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, 10012, Beijing, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Majid Hussain
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Sami Ullah
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Aqeel Sarwar
- Land Resource research Institute and Crop Science Center, National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| |
Collapse
|
17
|
Ajmal Z, Haq MU, Naciri Y, Djellabi R, Hassan N, Zaman S, Murtaza A, Kumar A, Al-Sehemi AG, Algarni H, Al-Hartomy OA, Dong R, Hayat A, Qadeer A. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO 2, NO x, and VOCs. CHEMOSPHERE 2022; 308:136358. [PMID: 36087730 DOI: 10.1016/j.chemosphere.2022.136358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
According to World Health Organization (WHO) survey, air pollution has become the major reason of several fatal diseases, which had led to the death of 7 million peoples around the globe. The 9 people out of 10 breathe air, which exceeds WHO recommendations. Several strategies are in practice to reduce the emission of pollutants into the air, and also strict industrial, scientific, and health recommendations to use sustainable green technologies to reduce the emission of contaminants into the air. Photocatalysis technology recently has been raised as a green technology to be in practice towards the removal of air pollutants. The scientific community has passed a long pathway to develop such technology from the material, and reactor points of view. Many classes of photoactive materials have been suggested to achieve such a target. In this context, the contribution of conjugated polymers (CPs), and their modification with some common inorganic semiconductors as novel photocatalysts, has never been addressed in literature till now for said application, and is critically evaluated in this review. As we know that CPs have unique characteristics compared to inorganic semiconductors, because of their conductivity, excellent light response, good sorption ability, better redox charge generation, and separation along with a delocalized π-electrons system. The advances in photocatalytic removal/reduction of three primary air-polluting compounds such as CO2, NOX, and VOCs using CPs based photocatalysts are discussed in detail. Furthermore, the synergetic effects, obtained in CPs after combining with inorganic semiconductors are also comprehensively summarized in this review. However, such a combined system, on to better charges generation and separation, may make the Adsorb & Shuttle process into action, wherein, CPs may play the sorbing area. And, we hope that, the critical discussion on the further enhancement of photoactivity and future recommendations will open the doors for up-to-date technology transfer in modern research.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China; MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yassine Naciri
- Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP, Cité Dakhla, Agadir, 8106, Morocco
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, 43007, Spain.
| | - Noor Hassan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR, 100081, China
| | - Shahid Zaman
- Key Laboratory of Energy Conversion and Storage Technologies, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, Xian, Shaanxi, 710049, PR China
| | - Anuj Kumar
- Nanotechnology Laboratory, Department of Chemistry, GLA, University, Mathura, Uttar Pradesh, 281406, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - R Dong
- MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
18
|
Porcu S, Secci F, Ricci PC. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022; 27:molecules27206828. [PMID: 36296421 PMCID: PMC9607189 DOI: 10.3390/molecules27206828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous photocatalysts have garnered extensive attention as a sustainable way for environmental remediation and energy storage process. Water splitting, solar energy conversion, and pollutant degradation are examples of nowadays applications where semiconductor-based photocatalysts represent a potentially disruptive technology. The exploitation of solar radiation for photocatalysis could generate a strong impact by decreasing the energy demand and simultaneously mitigating the impact of anthropogenic pollutants. However, most of the actual photocatalysts work only on energy radiation in the Near-UV region (<400 nm), and the studies and development of new photocatalysts with high efficiency in the visible range of the spectrum are required. In this regard, hybrid organic/inorganic photocatalysts have emerged as highly potential materials to drastically improve visible photocatalytic efficiency. In this review, we will analyze the state-of-art and the developments of hybrid photocatalysts for energy storage and energy conversion process as well as their application in pollutant degradation and water treatments.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070675-4821
| |
Collapse
|
19
|
Li YY, Song ZY, Xiao XY, Zhang LK, Huang HQ, Liu WQ, Huang XJ. In-situ electronic structure redistribution tuning of single-atom Mn/g-C 3N 4 catalyst to trap atomic-scale lead(II) for highly stable and accurate electroanalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129009. [PMID: 35500344 DOI: 10.1016/j.jhazmat.2022.129009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Constructing catalysts with simple structures, uniform effective sites, and excellent performance is crucial for understanding the reaction mechanism of target pollutants. Herein, the single-atom catalyst of Mn-intercalated graphitic carbon nitride (Mn/g-C3N4) was prepared. It was found that the intercalated Mn atoms acted as strong electron donors to effectively tune the electronic structure distribution of the in-situ N atoms, providing a large number of negative potential atomic-scale sites for catalytic reactions. In the detection, the in-situ N atom established an electron bridge for the transient electrostatic trapping of free Pb(II), which induced Pb-N-Mn coordination bonding. Even in g-C3N4-loaded Mn nanoparticles, the N atom was again confirmed to be the interaction site for coupling with Pb. And the MnII-N4-C/MnIV-N4-C cycle actively participated in the electrocatalysis of Pb(II) was confirmed. Moreover, Mn/g-C3N4 achieved highly stable and accurate detection for Pb(II) with a sensitivity of 2714.47 µA·µM-1·cm-2. And excellent reproducibility and specific detection of real water samples made the electrode practical. This study contributes to understanding the changes in the electronic structure of chemically inert substrates after single-atom intercalation and the interaction between contaminants and the microstructure of sensitive materials, providing a guiding strategy for designing highly active electrocatalytic interfaces for accurate electroanalysis.
Collapse
Affiliation(s)
- Yong-Yu Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Long-Ke Zhang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Qi Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Qing Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, PR China; Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
20
|
Zhu Y, He L, Ni Y, Li G, Li D, Lin W, Wang Q, Li L, Yang H. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g-CN) Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2374. [PMID: 35889598 PMCID: PMC9321715 DOI: 10.3390/nano12142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Graphitic carbon nitride (g-CN), a promising visible-light-responsive semiconductor material, is regarded as a fascinating photocatalyst and heterogeneous catalyst for various reactions due to its non-toxicity, high thermal durability and chemical durability, and "earth-abundant" nature. However, practical applications of g-CN in photoelectrochemical (PEC) and photoelectronic devices are still in the early stages of development due to the difficulties in fabricating high-quality g-CN layers on substrates, wide band gaps, high charge-recombination rates, and low electronic conductivity. Various fabrication and modification strategies of g-CN-based films have been reported. This review summarizes the latest progress related to the growth and modification of high-quality g-CN-based films. Furthermore, (1) the classification of synthetic pathways for the preparation of g-CN films, (2) functionalization of g-CN films at an atomic level (elemental doping) and molecular level (copolymerization), (3) modification of g-CN films with a co-catalyst, and (4) composite films fabricating, will be discussed in detail. Last but not least, this review will conclude with a summary and some invigorating viewpoints on the key challenges and future developments.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Liang He
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Yiqiang Ni
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Genzhuang Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Dongshuai Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Wang Lin
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Qiliang Wang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Liuan Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Haibin Yang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| |
Collapse
|
21
|
Sohail M, Anwar U, Taha T, I. A. Qazi H, Al-Sehemi AG, Ullah S, Gharni H, Ahmed I, Amin MA, Palamanit A, Iqbal W, Alharthi S, Nawawi W, Ajmal Z, Ali H, Hayat A. Nanostructured Materials Based on g-C3N4 for Enhanced Photocatalytic Activity and Potentials Application: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|