1
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
2
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
3
|
Dihan MR, Abu Nayeem SM, Roy H, Islam MS, Islam A, Alsukaibi AKD, Awual MR. Healthcare waste in Bangladesh: Current status, the impact of Covid-19 and sustainable management with life cycle and circular economy framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162083. [PMID: 36764546 PMCID: PMC9908568 DOI: 10.1016/j.scitotenv.2023.162083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 05/09/2023]
Abstract
COVID-19 has accelerated the generation of healthcare (medical) waste throughout the world. Developing countries are the most affected by this hazardous and toxic medical waste due to poor management systems. In recent years, Bangladesh has experienced increasing medical waste generation with estimated growth of 3 % per year. The existing healthcare waste management in Bangladesh is far behind the sustainable waste management concept. To achieve an effective waste management structure, Bangladesh has to implement life cycle assessment (LCA) and circular economy (CE) concepts in this area. However, inadequate data and insufficient research in this field are the primary barriers to the establishment of an efficient medical waste management systen in Bangladesh. This study is introduced as a guidebook containing a comprehensive overview of the medical waste generation scenario, management techniques, Covid-19 impact from treatment to testing and vaccination, and the circular economy concept for sustainable waste management in Bangladesh. The estimated generation of medical waste in Bangladesh without considering the surge due to Covid-19 and other unusual medical emergencies would be approximately 50,000 tons (1.25 kg/bed/day) in 2025, out of which 12,435 tons were predicted to be hazardous waste. However, our calculation estimated that a total of 82,553, 168.4, and 2300 tons of medical waste was generated only from handling of Covid patients, test kits, and vaccination from March 2021 to May 2022. Applicability of existing guidelines, and legislation to handle the current situation and feasibility of LCA on medical waste management system to minimize environmental impact were scrutinized. Incineration with energy recovery and microwave sterilization were found to be the best treatment techniques with minimal environmental impact. A circular economy model with the concept of waste minimizaton, and value recovery was proposed for sustainable medical waste management. This study suggests proper training on healthcare waste management, proposing strict regulations, structured research allocation, and implementation of public-private partnerships to reduce, and control medical waste generation for creating a sustainable medical waste management system in Bangladesh.
Collapse
Affiliation(s)
- Musfekur Rahman Dihan
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - S M Abu Nayeem
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh; Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh.
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | | | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia; Materials Science and Research Center, Japan AtomicEnergy Agency (JAEA), Hyogo 679-5148, Japan.
| |
Collapse
|
4
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|
5
|
Personalized Physiological Medicine as the Future of Intensive Care Medicine. J Crit Care Med (Targu Mures) 2022; 8:143-144. [PMID: 36062040 PMCID: PMC9396950 DOI: 10.2478/jccm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
|