1
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
2
|
Yang J, Wang S, Han Y, Wang C, Li J, Zhou H. Visible-Light-Mediated Azidation of α-Diazoesters with TMSN 3 via Direct Photoexcitation and S H2 Mechanism. J Org Chem 2024; 89:11707-11715. [PMID: 39080508 DOI: 10.1021/acs.joc.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible light-mediated azidation of α-diazoesters with TMSN3 to synthesize valuable α-azidoesters has been developed. Without using any catalysts and additives, the reaction proceeded smoothly under visible light irradiation at room temperature. A variety of α-diazoesters were successfully converted to the desired α-azidoesters, showing good functional group tolerance. The products could be readily transformed into triazole, α-azidoacid, and α-azidoamide. Mechanistic studies suggested that the reaction is mainly carrying out via direct photoexcitation and SH2 mechanism. This work provides a novel, mild, and practical protocol for synthesizing α-azidoesters.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangjiang Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Reyes Y, Adhikary A, Wnuk SF. Nitrogen-Centered Radicals Derived from Azidonucleosides. Molecules 2024; 29:2310. [PMID: 38792171 PMCID: PMC11124349 DOI: 10.3390/molecules29102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Azido-modified nucleosides have been extensively explored as substrates for click chemistry and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous) electrons are discussed. Regio and stereoselectivity of incorporation of an azido group ("radical arm") into the frame of nucleoside and selective generation of NCRs under reductive conditions, which often produce the same radical species that are observed upon ionization events due to radiation and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified precursors other than azidonucleosides are also discussed but only with the direct relation to the same/similar NCRs derived from azidonucleosides.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
4
|
Reyes Y, Mebel A, Wnuk SF. 6-azido and 6-azidomethyl uracil nucleosides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:453-471. [PMID: 37859415 DOI: 10.1080/15257770.2023.2271023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Azido nucleosides have been utilized for click reactions, metabolic incorporation into cellular DNA, and fluorescent imaging of live cells. Two classes of 6-azido modified uracil nucleosides; one with azido group directly attached to uracil ring and second with azido group attached via methylene linker are described. The 6-azido-2'-deoxyuridine (6-AdU) was prepared in 55% overall yield by lithiation-based regioselective C6-iodination of silyl protected 2'-deoxyuridine followed by treatment with sodium azide and deprotection with TBAF. Lithiation-based C6-alkylation of the protected uridine with methyl iodide followed by the oxidation of the 6-methyl product with selenium dioxide and the subsequent mesylation and azidation of the resulting 6-hydroxymethyl group gave after deprotection 6-azidomethyluridine (6-AmU) in 61% overall yield. Direct lithiation-based C6-hydroxymethylation followed by mesylation/azidation sequence and deprotection provided 6-AmU or 6-azidomethyl-2'-deoxyuridine (6-AmdU). Yields for the lithiation-based regioselective C6-iodination and alkylation were higher for uridine than 2'-deoxyuridine derivatives and they appear to be less dependent on the sugar protection group used. Strain promoted click reactions of 6-AdU and 6-AmdU with symmetrically fused cyclopropyl cyclooctyne (OCT) provided fluorescent triazoles. DFT-calculated dihedral angles and energy differences for the favored anti and syn conformation of 6-AdU and 6-AmdU versus their C5 azido counterparts are discussed.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Alexander Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
5
|
Polikanov YS, Etheve-Quelquejeu M, Micura R. Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications. Acc Chem Res 2023; 56:2713-2725. [PMID: 37728742 PMCID: PMC10552525 DOI: 10.1021/acs.accounts.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.
Collapse
Affiliation(s)
- Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center for
Biomolecular Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
7
|
Fay EM, Newton A, Berney M, El‐Sagheer AH, Brown T, McGouran JF. Two-Step Validation Approach for Tools To Study the DNA Repair Enzyme SNM1A. Chembiochem 2023; 24:e202200756. [PMID: 36917742 PMCID: PMC10962688 DOI: 10.1002/cbic.202200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.
Collapse
Affiliation(s)
- Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Ailish Newton
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Mark Berney
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Tom Brown
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| |
Collapse
|
8
|
Adjei D, Reyes Y, Kumar A, Ward S, Denisov SA, Alahmadi M, Sevilla MD, Wnuk SF, Mostafavi M, Adhikary A. Pathways of the Dissociative Electron Attachment Observed in 5- and 6-Azidomethyluracil Nucleosides: Nitrogen (N 2) Elimination vs Azide Anion (N 3-) Elimination. J Phys Chem B 2023; 127:1563-1571. [PMID: 36780335 PMCID: PMC9984991 DOI: 10.1021/acs.jpcb.2c08257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
5-Azidomethyl-2'-deoxyuridine (5-AmdU, 1) has been successfully employed for the metabolic labeling of DNA and fluorescent imaging of live cells. 5-AmdU also demonstrated significant radiosensitization in breast cancer cells via site-specific nitrogen-centered radical (π-aminyl (U-5-CH2-NH•), 2, and σ-iminyl (U-5-CH═N•), 3) formation. This work shows that these nitrogen-centered radicals are not formed via the reduction of the azido group in 6-azidomethyluridine (6-AmU, 4). Radical assignments were performed using electron spin resonance (ESR) in supercooled solutions, pulse radiolysis in aqueous solutions, and theoretical (DFT) calculations. Radiation-produced electron addition to 4 leads to the facile N3- loss, forming a stable neutral C-centered allylic radical (U-6-CH2•, 5) through dissociative electron attachment (DEA) via the transient negative ion, TNI (U-6-CH2-N3•-), in agreement with DFT calculations. In contrast, TNI (U-5-CH2-N3•-) of 1, via facile N2 loss (DEA) and protonation from the surrounding water, forms radical 2. Subsequently, 2 undergoes rapid H-atom abstraction from 1 and produces the metastable intermediate α-azidoalkyl radical (U-5-CH•-N3). U-5-CH•-N3 converts facilely to radical 3. N3- loss from U-6-CH2-N3•- is thermodynamically controlled, whereas N2 loss from U-5-CH2-N3•- is dictated by protonation from the surrounding waters and resonance conjugation of the azidomethyl side chain at C5 with the pyrimidine ring.
Collapse
Affiliation(s)
- Daniel Adjei
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Anil Kumar
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Samuel Ward
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Sergey A. Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Moaadh Alahmadi
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Michael D. Sevilla
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
9
|
Moreno S, Ramos Pittol JM, Hartl M, Micura R. Robust synthesis of 2'-azido modified RNA from 2'-amino precursors by diazotransfer reaction. Org Biomol Chem 2022; 20:7845-7850. [PMID: 36172831 DOI: 10.1039/d2ob01560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azides are versatile bioorthogonal reporter moieties that are commonly used for site-specific labeling and functionalization of RNA to probe its biology. The preparation of azido modified nucleic acids by solid-phase synthesis is problematic due to the inherent reactivity of P(III) species with azides according to the Staudinger reaction. Various strategies have been developed to bypass this limitation and are often time-consuming, low-yielding and labor-intensive. In particular, the synthesis of RNA with internal 2'-azido modifications is restricted to a single approach that employs P(V) chemistry instead of the widely used P(III) phosphoramidite chemistry. To fill this methodological gap, we present a novel convenient path toward 2'-azido RNA from readily accessible 2'-amino RNA through treatment with the diazotizing reagent fluorosulfuryl azide (FSO2N3). A diazotransfer reaction was established for oligoribonucleotides of different lengths and secondary structures. The robustness of the approach was further demonstrated for RNAs containing multiple 2'-azido moieties and for RNAs containing other sensitive modifications such as thiouridine or methylated nucleobases with a positive charge. The synthetic ease of generating 2'-azido RNA will pave the way for biotechnological applications, in particular for siRNA technologies and for referencing the growing number of RNA metabolic labeling approaches that rely on 2'-azido nucleosides.
Collapse
Affiliation(s)
- Sarah Moreno
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - José M Ramos Pittol
- Institute of Biochemistry, Center for Chemistry and Biomedicine (CCB) Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry, Center for Chemistry and Biomedicine (CCB) Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|