1
|
Zheng Y, Khan M, Yan S, Yang D, Chen Y, Zhang L, Song X, Li G, Liu J, Wang Y. Molybdenum single-atoms decorated multi-channel carbon nanofibers for advanced lithium-selenium batteries. Front Chem 2024; 12:1416059. [PMID: 38828017 PMCID: PMC11141169 DOI: 10.3389/fchem.2024.1416059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The cathode in lithium-selenium (Li-Se) batteries has garnered extensive attention owing to its superior specific capacity and enhanced conductivity compared to sulfur. Nonetheless, the adoption and advancement of Li-Se batteries face significant challenges due to selenium's low reactivity, substantial volume fluctuations, and the shuttle effect associated with polyselenides. Single-atom catalysts (SACs) are under the spotlight for their outstanding catalytic efficiency and optimal atomic utilization. To address the challenges of selenium's low chemical activity and volume expansion in Li-Se batteries, through electrospun, we have developed a lotus root-inspired carbon nanofiber (CNF) material, featured internal multi-channels and anchored with molybdenum (Mo) single atoms (Mo@CNFs). Mo single atoms significantly enhance the conversion kinetics of selenium (Se), facilitating rapid formation of Li2Se. The internally structured multi-channel CNF serves as an effective host matrix for Se, mitigating its volume expansion during the electrochemical process. The resulting cathode, Se/Mo@CNF composite, exhibits a high discharge specific capacity, superior rate performance, and impressive cycle stability in Li-Se batteries. After 500 cycles at a current density of 1 C, it maintains a capacity retention rate of 82% and nearly 100% coulombic efficiency (CE). This research offers a new avenue for the application of single-atom materials in enhancing advanced Li-Se battery performance.
Collapse
Affiliation(s)
- Yang Zheng
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Mustafa Khan
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Suxia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Dahai Yang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ying Chen
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Guochun Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Junfeng Liu
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Khurram Tufail M, Ahmed A, Rafiq M, Asif Nawaz M, Shoaib Ahmad Shah S, Sohail M, Sufyan Javed M, Najam T, Althomali RH, Rahman MM. Chemistry Aspects and Designing Strategies of Flexible Materials for High-Performance Flexible Lithium-Ion Batteries. CHEM REC 2024; 24:e202300155. [PMID: 37435960 DOI: 10.1002/tcr.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Indexed: 07/13/2023]
Abstract
In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.
Collapse
Affiliation(s)
- Muhammad Khurram Tufail
- College of Materials Science and Engineering, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Adeel Ahmed
- College of Materials Science and Engineering, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Muhammad Rafiq
- College of Materials Science and Engineering, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | | | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | | - Tayyaba Najam
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Li J, Gao B, Shi Z, Chen J, Fu H, Liu Z. Graphene/Heterojunction Composite Prepared by Carbon Thermal Reduction as a Sulfur Host for Lithium-Sulfur Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4956. [PMID: 37512231 PMCID: PMC10383576 DOI: 10.3390/ma16144956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
An interlayer nanocomposite (CC@rGO) consisting of a graphene heterojunction with CoO and Co9S8 was prepared using a simple and low-cost hydrothermal calcination method, which was tested as a cathode sulfur carrier for lithium-sulfur batteries. The CC@rGO composite comprises a spherical heterostructure uniformly distributed between graphene sheet layers, preventing stacking the graphene sheet layer. After the introduction of cobalt heterojunction on a graphene substrate, the Co element content increases the reactive sites of the composite and improves its electrochemical properties to some extent. The composite exhibited good cycling performance with an initial discharge capacity of 847.51 mAh/g at 0.5 C and a capacity decay rate of 0.0448% after 500 cycles, which also kept 452.91 mAh/g at 1 C and in the rate test from 3 C back to 0.1 C maintained 993.27 mAh/g. This article provides insight into the design of cathode materials for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zeyuan Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Jiayang Chen
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Haiyang Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zhuang Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Chen C, Zhang M, Chen Q, Duan H, Liu S. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries. CHEM REC 2023:e202200278. [PMID: 36807712 DOI: 10.1002/tcr.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Lithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture. In addition, good tunability gives framework materials unlimited possibilities to achieve satisfying performance for LSBs. In this review, the recent advances in pristine framework materials, their derivatives, and composites have been summarized. And a short conclusion and outlook regard to future prospects for guiding the development of framework materials and LSBs.
Collapse
Affiliation(s)
- Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Mengfei Zhang
- High School Affiliated to Nanjing Normal University Qinhuai Campus, Nanjing, 211126, Jiangsu, PRC
| | - Quanzhan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Haibao Duan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| |
Collapse
|