1
|
Zhu M, Wang QL, Huang H, Mao G, Deng GJ. General Defluoroalkylation of Trifluoromethylarenes with Both Electron-Donating and -Withdrawing Alkenes. J Org Chem 2024; 89:12591-12609. [PMID: 39141011 DOI: 10.1021/acs.joc.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The incorporation of gem-difluoromethylene units into organic molecules remains a formidable challenge. Conventional methodologies for constructing aryldifluoromethyl derivatives relied on the use of high-functional fluorinating regents under harsh conditions. Herein, we report general and efficient photoredox catalytic systems for defluoroalkylation of readily available trifluoromethylarenes through selective C-F cleavage to deliver gem-difluoromethyl radicals which proceed through reductive addition to both electron-donating and withdrawing alkenes under transition-metal free conditions. Mechanistic studies reveal that thiol serves as both photocatalyst and HAT reagent under visible light irradiation. This synergistic photocatalysis and HAT catalysis protocol exhibits ample and salient features such as high chemo- and regioselectivity, broad substrate scope, amenable gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Mengqi Zhu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiao-Lin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Sugihara N, Nishimoto Y, Osakada Y, Fujitsuka M, Abe M, Yasuda M. Sequential C-F Bond Transformation of the Difluoromethylene Unit in Perfluoroalkyl Groups: A Combination of Fine-Tuned Phenothiazine Photoredox Catalyst and Lewis Acid. Angew Chem Int Ed Engl 2024; 63:e202401117. [PMID: 38380969 DOI: 10.1002/anie.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
A sequential process via photoredox catalysis and Lewis acid mediation for C-F bond transformation of the CF2 unit in perfluoroalkyl groups has been achieved to transform perfluoroalkylarenes into complex fluoroalkylated compounds. A phenothiazine-based photocatalyst promotes the defluoroaminoxylation of perfluoroalkylarenes with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) under visible light irradiation, affording the corresponding aminoxylated products. These products undergo a further defluorinative transformation with various organosilicon reagents mediated by AlCl3 to provide highly functionalized perfluoroalkyl alcohols. Our novel phenothiazine catalyst works efficiently in the defluoroaminoxylation. Transient absorption spectroscopy revealed that the catalyst regeneration step is crucial for the photocatalytic aminoxylation.
Collapse
Affiliation(s)
- Naoki Sugihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuko Osakada
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Yamadagaoka 1-1, Suita, Osaka, 565-0871, Japan
| | - Mamoru Fujitsuka
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
4
|
Csókás D, Mondal B, Đokić M, Gupta R, Lee BJY, Young RD. Stereoselective Synthesis of Fluoroalkanes via FLP Mediated Monoselective C─F Activation of Geminal Difluoroalkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305768. [PMID: 37907424 PMCID: PMC10754124 DOI: 10.1002/advs.202305768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/02/2023]
Abstract
A method of desymmetrization of geminal difluoroalkanes using frustrated Lewis pair (FLP) mediated monoselective C-F activation where a chiral sulfide is the Lewis base component is reported. The stereoselective reaction provides generally high yields of diastereomeric sulfonium salts with dr of up to 95:5. The distribution of diastereomers is found to be thermodynamically controlled via facile sulfide exchange. The use of enantiopure chiral sulfides allows for high stereospecificity in nucleophilic substitution reactions and the formation of stereoenriched products.
Collapse
Affiliation(s)
- Dániel Csókás
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- Research Centre for Natural SciencesInstitute of Organic ChemistryBudapest1117Hungary
| | - Bivas Mondal
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Miloš Đokić
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Richa Gupta
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Beatrice J. Y. Lee
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Rowan D. Young
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt Lucia4067Australia
| |
Collapse
|