Larsen EMH, Brock-Nannestad T, Skibsted J, Reinholdt A, Bendix J. A homoleptic Ag
III complex stabilized by succinimidate ligands.
Chem Sci 2024:d4sc04843a. [PMID:
39416294 PMCID:
PMC11474406 DOI:
10.1039/d4sc04843a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Herein, the first example of a homoleptic AgIII complex stabilized by a monodentate N-donor ligand is presented. Na2[S2O8] oxidizes the linear AgI complex, Na[Ag(succ)2] (1Na), to form a square planar argentate(iii) ion, [Ag(succ)4]-, which crystallizes with a polymeric chain-structure, M[Ag(succ)4] (2M), when treated with alkali metal sulfate M2SO4 (M = K, Rb, Cs). A mixed-valent Robin-Day class I system, [(H2O)Ag][Ag(succ)4] (2Ag), forms in the absence of K+/Rb+/Cs+ ion. Diamagnetic 2Cs displays a succinimide C[double bond, length as m-dash]O stretching frequency at higher energy than does the isoelectronic PdII complex, [(H2O)Na]2[Pd(succ)4] (3Na). Moreover, 2Cs displays UV-vis absorptions that are more intense and occur at lower energy than those in 3Na. The electron-deficient nature of 2Cs is further evident from its ability to oxidize water to O2. From 109Ag magic-angle spinning NMR studies, a highly deshielded AgIII environment in 2Cs (2080 ppm) relative to the AgI starting material 1Na (492 ppm) is observed.
Collapse