1
|
He Z, Lang L, Hui J, Ma Y, Yang C, Weng W, Huang J, Zhao X, Zhang X, Liang Q, Jiang J, Feng J. Brain Extract of Subacute Traumatic Brain Injury Promotes the Neuronal Differentiation of Human Neural Stem Cells via Autophagy. J Clin Med 2022; 11:jcm11102709. [PMID: 35628836 PMCID: PMC9145659 DOI: 10.3390/jcm11102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Background: After a traumatic brain injury (TBI), the cell environment is dramatically changed, which has various influences on grafted neural stem cells (NSCs). At present, these influences on NSCs have not been fully elucidated, which hinders the finding of an optimal timepoint for NSC transplantation. Methods: Brain extracts of TBI mice were used in vitro to simulate the different phase TBI influences on the differentiation of human NSCs. Protein profiles of brain extracts were analyzed. Neuronal differentiation and the activation of autophagy and the WNT/CTNNB pathway were detected after brain extract treatment. Results: Under subacute TBI brain extract conditions, the neuronal differentiation of hNSCs was significantly higher than that under acute brain extract conditions. The autophagy flux and WNT/CTNNB pathway were activated more highly within the subacute brain extract than in the acute brain extract. Autophagy activation by rapamycin could rescue the neuronal differentiation of hNSCs within acute TBI brain extract. Conclusions: The subacute phase around 7 days after TBI in mice could be a candidate timepoint to encourage more neuronal differentiation after transplantation. The autophagy flux played a critical role in regulating neuronal differentiation of hNSCs and could serve as a potential target to improve the efficacy of transplantation in the early phase.
Collapse
Affiliation(s)
- Zhenghui He
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
| | - Lijian Lang
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
| | - Jiyuan Hui
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
| | - Yuxiao Ma
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
| | - Chun Yang
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
| | - Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai 200127, China;
| | - Xiongfei Zhao
- Shanghai Angecon Biotechnology Co., Ltd., Shanghai 201318, China; (X.Z.); (X.Z.)
| | - Xiaoqi Zhang
- Shanghai Angecon Biotechnology Co., Ltd., Shanghai 201318, China; (X.Z.); (X.Z.)
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jiyao Jiang
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
- Shanghai Institute of Head Trauma, Shanghai 200127, China;
| | - Junfeng Feng
- Brain Injury Center, Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Z.H.); (L.L.); (J.H.); (Y.M.); (C.Y.); (J.J.)
- Shanghai Institute of Head Trauma, Shanghai 200127, China;
- Correspondence: ; Tel.: +86-136-1186-0825
| |
Collapse
|
2
|
Extrapolating neurogenesis of mesenchymal stem/stromal cells on electroactive and electroconductive scaffolds to dental and oral-derived stem cells. Int J Oral Sci 2022; 14:13. [PMID: 35210393 PMCID: PMC8873504 DOI: 10.1038/s41368-022-00164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/06/2023] Open
Abstract
The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.
Collapse
|
3
|
Hernández R, Jiménez-Luna C, Ortiz R, Setién F, López M, Perazzoli G, Esteller M, Berdasco M, Prados J, Melguizo C. Impact of the Epigenetically Regulated Hoxa-5 Gene in Neural Differentiation from Human Adipose-Derived Stem Cells. BIOLOGY 2021; 10:biology10080802. [PMID: 34440035 PMCID: PMC8389620 DOI: 10.3390/biology10080802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) may be used in some nervous system pathologies, although obtaining an adequate degree of neuronal differentiation is an important barrier to their applicability. This requires a deep understanding of the expression and epigenetic changes of the most important genes involved in their differentiation. We used hASCs from human lipoaspirates to induce neuronal-like cells through three protocols (Neu1, 2, and 3), determined the degree of neuronal differentiation using specific biomarkers in culture cells and neurospheres, and analyzed epigenetic changes of genes involved in this differentiation. Furthermore, we selected the Hoxa-5 gene to determine its potential to improve neuronal differentiation. Our results showed that an excellent hASC neuronal differentiation process using Neu1 which efficiently modulated NES, CHAT, SNAP25, or SCN9A neuronal marker expression. In addition, epigenetic studies showed relevant changes in Hoxa-5, GRM4, FGFR1, RTEL1, METRN, and PAX9 genes. Functional studies of the Hoxa-5 gene using CRISPR/dCas9 and lentiviral systems showed that its overexpression induced hASCs neuronal differentiation that was accelerated with the exposure to Neu1. These results suggest that Hoxa-5 is an essential gene in hASCs neuronal differentiation and therefore, a potential candidate for the development of cell therapy strategies in neurological disorders.
Collapse
Affiliation(s)
- Rosa Hernández
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raúl Ortiz
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Fernando Setién
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - Miguel López
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Gloria Perazzoli
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Jose Prados
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolación Melguizo
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Holan V, Hermankova B, Kossl J. Perspectives of Stem Cell-Based Therapy for Age-Related Retinal Degenerative Diseases. Cell Transplant 2018; 26:1538-1541. [PMID: 29113466 PMCID: PMC5680954 DOI: 10.1177/0963689717721227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Retinal degenerative diseases, which include age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, mostly affect the elderly population and are the most common cause of decreased quality of vision or even blindness. So far, there is no satisfactory treatment protocol to prevent, stop, or cure these disorders. A great hope and promise for patients suffering from retinal diseases is represented by stem cell-based therapy that could replace diseased or missing retinal cells and support regeneration. In this respect, mesenchymal stem cells (MSCs) that can be obtained from the particular patient and used as autologous cells have turned out to be a promising stem cell type for treatment. Here we show that MSCs can differentiate into cells expressing markers of retinal cells, inhibit production of pro-inflammatory cytokines by retinal tissue, and produce a number of growth and neuroprotective factors for retinal regeneration. All of these properties make MSCs a prospective cell type for cell-based therapy of age-related retinal degenerative diseases.
Collapse
Affiliation(s)
- Vladimir Holan
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Barbora Hermankova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Jan Kossl
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Hermankova B, Kossl J, Javorkova E, Bohacova P, Hajkova M, Zajicova A, Krulova M, Holan V. The Identification of Interferon-γ as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells. Stem Cells Dev 2017; 26:1399-1408. [PMID: 28728472 DOI: 10.1089/scd.2017.0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinal disorders represent the main cause of decreased quality of vision and even blindness worldwide. The loss of retinal cells causes irreversible damage of the retina, and there are currently no effective treatment protocols for most retinal degenerative diseases. A promising approach for the treatment of retinal disorders is represented by stem cell-based therapy. The perspective candidates are mesenchymal stem cells (MSCs), which can differentiate into multiple cell types and produce a number of trophic and growth factors. In this study, we show the potential of murine bone marrow-derived MSCs to differentiate into cells expressing retinal markers and we identify the key supportive role of interferon-γ (IFN-γ) in the differentiation process. MSCs were cultured for 7 days with retinal extract and supernatant from T-cell mitogen concanavalin A-stimulated splenocytes, simulating the inflammatory site of retinal damage. MSCs cultured in such conditions differentiated to the cells expressing retinal cell markers such as rhodopsin, S antigen, retinaldehyde-binding protein, calbindin 2, recoverin, and retinal pigment epithelium 65. To identify a supportive molecule in the supernatants from activated spleen cells, MSCs were cultured with retinal extract in the presence of various T-cell cytokines. The expression of retinal markers was enhanced only in the presence of IFN-γ, and the supportive role of spleen cell supernatants was abrogated with the neutralization antibody anti-IFN-γ. In addition, differentiated MSCs were able to express a number of neurotrophic factors, which are important for retinal regeneration. Taken together, the results show that MSCs can differentiate into cells expressing retinal markers and that this differentiation process is supported by IFN-γ.
Collapse
Affiliation(s)
- Barbora Hermankova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Jan Kossl
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Eliska Javorkova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Pavla Bohacova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Michaela Hajkova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Alena Zajicova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Krulova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Vladimir Holan
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| |
Collapse
|