1
|
Wang S, Liu Z, Wang J, Cheng L, Hu J, Tang J. Platelet-rich plasma (PRP) in nerve repair. Regen Ther 2024; 27:244-250. [PMID: 38586873 PMCID: PMC10997806 DOI: 10.1016/j.reth.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.
Collapse
Affiliation(s)
- Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Zhengping Liu
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Jianing Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Lulu Cheng
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinfeng Hu
- Department of Orthopedics, Wuhan University Renmin Hospital, NO. 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jin Tang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Wuhan Sports University, NO 279 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China
| |
Collapse
|
2
|
Anitua E, Troya M, Alkhraisat MH. Effectiveness of platelet derivatives in neuropathic pain management: A systematic review. Biomed Pharmacother 2024; 180:117507. [PMID: 39378680 DOI: 10.1016/j.biopha.2024.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) has a considerable impact on the global economic burden and seriously impairs patients' quality of life. Currently there is no evidence-based "effective" treatment and new treatments are needed. Recently, platelet rich plasma (PRP) has emerged as an alternative treatment. Therefore, a systematic review has been conducted to present an evidence-based assessment of the use of PRP in the treatment of NP. METHODS Randomized studies that investigated the effect of PRP injection on patients with NP compared to alternative treatments or placebo were included. An encompassing search of specific databases, from their inception to April 2024, was performed. The databases were as follows: PubMed, Web of Sciences (MEDLINE) and Cochrane Library. The Cochrane Risk-of-Bias 2 tool was used to assess study methodological quality. RESULTS A total of 12 randomized studies with 754 patients with different NP conditions were included in this systematic review. According to the results from the qualitative analysis, PRP injection exerted a positive effect on improving pain intensity on most of the trials (8 out of 12). In the remaining studies, no differences were found. A high safety profile was reported with no serious adverse effects in the analysed patients. CONCLUSION PRP treatment might be an effective therapeutic approach for patients with different neuropathic pain conditions. The efficacy of PRP was not dependant on the aetiology of the underlying disorder; nevertheless, interpretations of the results should be performed cautiously, as for the under-representation of NP conditions.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - María Troya
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H Alkhraisat
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Adjunct professor, Faculty of Dentistry, University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
DuVal M, Alkhraisat MH. Adjunctive Plasma Rich in Growth Factors in the Treatment of Osteomyelitis and Large Odontogenic Cysts Prior to Successful Implant Rehabilitation: Case Report. Dent J (Basel) 2023; 11:184. [PMID: 37623280 PMCID: PMC10453440 DOI: 10.3390/dj11080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Osteomyelitis of the jaws presents a clinical challenge to conventional treatment, often requiring multiple surgical interventions resulting in significant deformity and presenting significant problems to satisfactory rehabilitation. While benign odontogenic cysts, such as the radicular cyst, are generally predictably treated, they can cause significant localized bone destruction and thus can present significant problems in satisfactory rehabilitation. In this case report, patients were treated combining conventionally appropriate surgical debridement and oral antibiotics with adjunctive plasma rich in growth factors (PRGF). Patients showed a complete soft tissue and osseous regeneration to their pre-pathologic state, with successful implant rehabilitation. PRGF appears to be highly successful in minimizing or eliminating osseous deformities normally associated with conventional treatment of osteomyelitis of the jaw and treatment of large odontogenic cysts. Future trials must be performed to confirm these results in comparison to controls using conventional treatment alone.
Collapse
Affiliation(s)
- Marc DuVal
- Department of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
- Montreal Jewish General Hospital, Department of Dentistry and Oral and Oral and Maxillofacial Surgery, Montreal, QC H3T 1E2, Canada
- Santa Cabrini Hospital, Department of Surgery, Division of Plastics, Montreal, QC H1T 1P7, Canada
| | | |
Collapse
|
4
|
Ríos Luna A, Fahandezh-Saddi Díaz H, Villanueva Martínez M, Bueno Horcajadas Á, Prado R, Anitua E, Padilla S. Reconstruction of Chronic Proximal Hamstring Tear: A Novel Surgical Technique with Semitendinosus Tendon Allograft Assisted with Autologous Plasma Rich in Growth Factors (PRGF). J Clin Med 2022; 11:jcm11185443. [PMID: 36143088 PMCID: PMC9503197 DOI: 10.3390/jcm11185443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The reconstruction of a chronic proximal hamstring tear is a challenging pathology that posits difficulties to surgeons due to the distal retraction of the hamstring tendon stumps and the entrapment of the sciatic nerve within the scar formed around the torn hamstring tendon. We describe a novel surgical technique using a semitendinosus tendon allograft sutured in a “V inversion” manner, thereby avoiding an excess of tension and length of the new reconstructed hamstring tendons. In addition, and in order to speed up the healing process and avoid new sciatic entrapment, we assisted the surgery with liquid plasma rich in growth factors (PRGF) injected intraosseously, intratendinously and within the suture areas, as well as wrapping the sciatic nerve with a PRGF membrane. In conclusion, this novel approach offers mechanical and biological advantages to tackle the large retraction of hamstring stumps and the entrapment of the sciatic nerve within the scar.
Collapse
Affiliation(s)
- Antonio Ríos Luna
- Department of Traumatology and Orthopedic Surgery, Clínica Orthoindal, 04004 Almería, Spain
- Correspondence:
| | | | | | - Ángel Bueno Horcajadas
- Department of Radiology, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Spain
| | - Roberto Prado
- BTI—Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| | - Eduardo Anitua
- BTI—Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| | - Sabino Padilla
- BTI—Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| |
Collapse
|
5
|
Yadav A, Ramasamy TS, Lin SC, Chen SH, Lu J, Liu YH, Lu FI, Hsueh YY, Lin SP, Wu CC. Autologous Platelet-Rich Growth Factor Reduces M1 Macrophages and Modulates Inflammatory Microenvironments to Promote Sciatic Nerve Regeneration. Biomedicines 2022; 10:biomedicines10081991. [PMID: 36009539 PMCID: PMC9406033 DOI: 10.3390/biomedicines10081991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The failure of peripheral nerve regeneration is often associated with the inability to generate a permissive molecular and cellular microenvironment for nerve repair. Autologous therapies, such as platelet-rich plasma (PRP) or its derivative platelet-rich growth factors (PRGF), may improve peripheral nerve regeneration via unknown mechanistic roles and actions in macrophage polarization. In the current study, we hypothesize that excessive and prolonged inflammation might result in the failure of pro-inflammatory M1 macrophage transit to anti-inflammatory M2 macrophages in large nerve defects. PRGF was used in vitro at the time the unpolarized macrophages (M0) macrophages were induced to M1 macrophages to observe if PRGF altered the secretion of cytokines and resulted in a phenotypic change. PRGF was also employed in the nerve conduit of a rat sciatic nerve transection model to identify alterations in macrophages that might influence excessive inflammation and nerve regeneration. PRGF administration reduced the mRNA expression of tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and IL-6 in M0 macrophages. Increased CD206 substantiated the shift of pro-inflammatory cytokines to the M2 regenerative macrophage. Administration of PRGF in the nerve conduit after rat sciatic nerve transection promoted nerve regeneration by improving nerve gross morphology and its targeted gastrocnemius muscle mass. The regenerative markers were increased for regrown axons (protein gene product, PGP9.5), Schwann cells (S100β), and myelin basic protein (MBP) after 6 weeks of injury. The decreased expression of TNFα, IL-1β, IL-6, and CD68+ M1 macrophages indicated that the inflammatory microenvironments were reduced in the PRGF-treated nerve tissue. The increase in RECA-positive cells suggested the PRGF also promoted angiogenesis during nerve regeneration. Taken together, these results indicate the potential role and clinical implication of autologous PRGF in regulating inflammatory microenvironments via macrophage polarization after nerve transection.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sheng-Che Lin
- Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 709, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5327); Fax: +886-6-209-3007
| |
Collapse
|
6
|
Galán V, Iñigo-Dendariarena I, Galán I, Prado R, Padilla S, Anitua E. The Effectiveness of Plasma Rich in Growth Factors (PRGF) in the Treatment of Nerve Compression Syndromes of the Upper Extremity: A Retrospective Observational Clinical Study. J Clin Med 2022; 11:jcm11164789. [PMID: 36013028 PMCID: PMC9409748 DOI: 10.3390/jcm11164789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Nerve compression syndromes of the upper extremity are a common cause of neuropathic pain and functional impairment. Recently, platelet-rich plasma (PRP) infiltrations have emerged as an effective biological approach to the treatment of this type of injury. The objectives of this retrospective observational study were to assess clinical improvement in patients with median and ulnar nerve entrapment syndrome after undergoing biologically-assisted nerve release surgery with plasma-rich-in-growth-factors (PRGF) technology. Methods: Participants (n = 39) with moderate-to-severe nerve compression syndrome of the upper limb diagnosed by both electromyography and clinical examination, and who were treated with PRGF, were identified from the center’s medical records. The evaluation was based on patient-reported outcomes. Pre- and post-treatment differences in the Visual analog scale (VAS), the Boston carpal tunnel questionnaire (BCTQ), and the Quick-DASH score were assessed. Results: Three study groups were conducted: patients with carpal tunnel syndrome (n = 16), with recurrent carpal tunnel syndrome (n = 8), and with ulnar nerve entrapment (n = 15). The median follow-up was 12 months (interquartile range (IQR), 9−16). In comparison to pre-treatment values, all three study groups obtained statistically significant improvements for the three analyzed scales at the end of the follow-up, with p < 0.001 for all scales in the carpal tunnel syndrome and ulnar nerve entrapment groups and p < 0.01 for all scales in the recurrent carpal tunnel syndrome group. There were no serious adverse effects in the analyzed patients. Conclusion: PRGF-assisted open surgical nerve release treatment (intraneural and perineural liquid PRGF infiltrations and nerve wrapping with PRGF membrane) exerts long-term beneficial effects on pain reduction and functional improvement in the nerve and nerve−muscle unit in patients with upper extremity compression syndromes.
Collapse
Affiliation(s)
- Víctor Galán
- Hand, Wrist and Microsurgery Unit, Clínica Indautxu, 48010 Bilbao, Spain
- Correspondence:
| | | | - Iñigo Galán
- School of Medicine, European University, 28670 Madrid, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| | - Sabino Padilla
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| |
Collapse
|
7
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
8
|
Functional Recovery following Repair of Long Nerve Gaps in Senior Patient 2.6 Years Posttrauma. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3831. [PMID: 34584828 PMCID: PMC8460218 DOI: 10.1097/gox.0000000000003831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Sensory nerve grafts are the clinical “gold standard” for repairing peripheral nerve gaps. However, reliable good-to-excellent recovery develops only for gaps less than 3–5 cm, repairs performed less than 3–5 months posttrauma, and patients aged less than 20–25 years. As the value of any variable increases, the extent of recovery decreases precipitously, and if the values of any two or all increase, there is little to no recovery. One 9-cm-long and two 11-cm-long nerve gaps in a 56-year-old patient were repaired 2.6 years posttrauma. They were bridged with two sensory nerve grafts within an autologous platelet-rich plasma-filled collagen tube. Both were connected to the proximal ulnar nerve stump, with one graft end to the distal motor and the other to the sensory nerve branches. Although presurgery the patient suffered chronic level 10 excruciating neuropathic pain, it was reduced to 6 within 2 months, and did not increase for more than 2 years. Motor axons regenerated across the 9-cm gap and innervated the appropriate two measured muscles, with limited muscle fiber recruitment. Sensory axons regenerated across both 11-cm gaps and restored normal topographically correct sensitivity to stimuli of all sensory modalities, including static two-point discrimination of 5 mm, and pressure of 2.83 g to all regions innervated by both sensory nerves. This novel technique induced a significant long-term reduction in chronic excruciating neuropathic pain while promoting muscle reinnervation and complete sensory recovery, despite the values of all three variables that reduce or prevent axon regeneration and recovery being simultaneously large.
Collapse
|
9
|
Hexter AT, Karali A, Kao A, Tozzi G, Heidari N, Petrie A, Boyd A, Kalaskar DM, Pendegrass C, Rodeo S, Haddad F, Blunn G. Effect of Demineralized Bone Matrix, Bone Marrow Mesenchymal Stromal Cells, and Platelet-Rich Plasma on Bone Tunnel Healing After Anterior Cruciate Ligament Reconstruction: A Comparative Micro-Computed Tomography Study in a Tendon Allograft Sheep Model. Orthop J Sports Med 2021; 9:23259671211034166. [PMID: 34568508 PMCID: PMC8461134 DOI: 10.1177/23259671211034166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The effect of demineralized bone matrix (DBM), bone marrow–derived mesenchymal stromal cells (BMSCs), and platelet-rich plasma (PRP) on bone tunnel healing in anterior cruciate ligament reconstruction (ACLR) has not been comparatively assessed. Hypothesis: These orthobiologics would reduce tunnel widening, and the effects on tunnel diameter would be correlated with tunnel wall sclerosis. Study Design: Controlled laboratory study. Methods: A total of 20 sheep underwent unilateral ACLR using tendon allograft and outside-in interference screw fixation. The animals were randomized into 4 groups (n = 5 per group): Group 1 received 4mL of DBM paste, group 2 received 10 million BMSCs in fibrin sealant, group 3 received 12 mL of activated leukocyte-poor platelet-rich plasma, and group 4 (control) received no treatment. The sheep were euthanized after 12 weeks, and micro-computed tomography scans were performed. The femoral and tibial tunnels were divided into thirds (aperture, midportion, and exit), and the trabecular bone structure, bone mineral density (BMD), and tunnel diameter were measured. Tunnel sclerosis was defined by a higher bone volume in a 250-µm volume of interest compared with a 4-mm volume of interest surrounding the tunnel. Results: Compared with the controls, the DBM group had a significantly higher bone volume fraction (bone volume/total volume [BV/TV]) (52.7% vs 31.8%; P = .020) and BMD (0.55 vs 0.47 g/cm3; P = .008) at the femoral aperture and significantly higher BV/TV at femoral midportion (44.2% vs 32.9%; P = .038). There were no significant differences between the PRP and BMSC groups versus controls in terms of trabecular bone analysis or BMD. In the controls, widening at the femoral tunnel aperture was significantly greater than at the midportion (46.7 vs 41.7 mm2; P = .034). Sclerosis of the tunnel was common and most often seen at the femoral aperture. In the midportion of the femoral tunnel, BV/TV (r = 0.52; P = .019) and trabecular number (rS = 0.50; P = .024) were positively correlated with tunnel widening. Conclusion: Only DBM led to a significant increase in bone volume, which was seen in the femoral tunnel aperture and midportion. No treatment significantly reduced bone tunnel widening. Tunnel sclerosis in the femoral tunnel midportion was correlated significantly with tunnel widening. Clinical Relevance: DBM might have potential clinical use to enhance healing in the femoral tunnel after ACLR.
Collapse
Affiliation(s)
- Adam T Hexter
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Alex Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Nima Heidari
- Royal London Hospital and Orthopaedic Specialists (OS), London, UK
| | - Aviva Petrie
- Eastman Dental Institute, University College London, London, UK
| | - Ashleigh Boyd
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Deepak M Kalaskar
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Catherine Pendegrass
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Scott Rodeo
- Hospital of Special Surgery, New York, New York, USA
| | | | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
10
|
Stone JE, Fung TS, Machan M, Campbell C, Shan RLP, Debert CT. Ultrasound-guided platelet-rich plasma injections for post-traumatic greater occipital neuralgia: study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud 2021; 7:130. [PMID: 34158124 PMCID: PMC8218409 DOI: 10.1186/s40814-021-00867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-traumatic headaches (PTH) are a common sequelae of traumatic brain injury (TBI) and greatly impact patient function and quality of life. Post-traumatic greater occipital neuralgia (GON) is a type of post-traumatic headache. Conventional treatment includes steroid/anesthetic injections which typically alleviate pain but have a short duration of effect. Platelet-rich plasma (PRP) is an emerging biological treatment for numerous degenerative disorders, including peripheral nerve disorders. The primary aim of this pilot study is to evaluate whether a randomized control trial of PRP for the treatment of GON in patients with post-traumatic headaches is feasible in regard to recruitment, adherence, retention, and adherence and adverse events. Exploratory aims include improvement in pain, function, and quality of life in patients with post-traumatic GON receiving PRP compared to steroid/anesthetic and normal saline injections. METHODS Thirty adults (over 18 years of age) with post-traumatic GON will be randomized into one of three groups: (1) autologous PRP injection, (2) steroid/anesthetic injection (standard care), or (3) placebo injection with normal saline. Injections will be performed to the greater occipital nerve under ultrasound guidance by a trained physician. Daily headache intensity and frequency data will be collected pre-injection and for the duration of the study period. Feasibility will be defined as greater than 30% recruitment, 70% completion of intervention, 70% retention, and less than 2 minor adverse events. Exploratory outcomes will be explored using the Headache Impact Test-6 (HIT-6, a valid and reliable 6-item questionnaire for assessment of the impact of headaches across different diagnostic groups of headaches) and the quality of life in following brain injury questionnaire (QOILIBRI). DISCUSSION This pilot study will be the first to evaluate the feasibility of PRP as a potential treatment of GON in patients with post-traumatic headache. TRIAL REGISTRATION ClinicalTrials.gov - NCT04051203 (registered August 9, 2019).
Collapse
Affiliation(s)
- Jacqueline E Stone
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Tak S Fung
- Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Machan
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Rodney Li Pi Shan
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| |
Collapse
|
11
|
Lu CF, Wang B, Zhang PX, Han S, Pi W, Kou YH, Jiang BG. Combining chitin biological conduits with small autogenous nerves and platelet-rich plasma for the repair of sciatic nerve defects in rats. CNS Neurosci Ther 2021; 27:805-819. [PMID: 33838005 PMCID: PMC8193701 DOI: 10.1111/cns.13640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aims Peripheral nerve defects are often difficult to recover from, and there is no optimal repair method. Therefore, it is important to explore new methods of repairing peripheral nerve defects. This study explored the efficacy of nerve grafts constructed from chitin biological conduits combined with small autogenous nerves (SANs) and platelet‐rich plasma (PRP) for repairing 10‐mm sciatic nerve defects in rats. Methods To prepare 10‐mm sciatic nerve defects, SANs were first harvested and PRP was extracted. The nerve grafts consisted of chitin biological conduits combined with SAN and PRP, and were used to repair rat sciatic nerve defects. These examinations, including measurements of axon growth efficiency, a gait analysis, electrophysiological tests, counts of regenerated myelinated fibers and observations of their morphology, histological evaluation of the gastrocnemius muscle, retrograde tracing with Fluor‐Gold (FG), and motor endplates (MEPs) distribution analysis, were conducted to evaluate the repair status. Results Two weeks after nerve transplantation, the rate and number of regenerated axons in the PRP‐SAN group improved compared with those in the PRP, SAN, and Hollow groups. The PRP‐SAN group exhibited better recovery in terms of the sciatic functional index value, composite action potential intensity, myelinated nerve fiber density, myelin sheath thickness, and gastrectomy tissue at 12 weeks after transplantation, compared with the PRP and SAN groups. The results of FG retrograde tracing and MEPs analyses showed that numbers of FG‐positive sensory neurons and motor neurons as well as MEPs distribution density were higher in the PRP‐SAN group than in the PRP or SAN group. Conclusions Nerve grafts comprising chitin biological conduits combined with SANs and PRP significantly improved the repair of 10‐mm sciatic nerve defects in rats and may have therapeutic potential for repairing peripheral nerve defects in future applications.
Collapse
Affiliation(s)
- Chang-Feng Lu
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Bo Wang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Han
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Yu-Hui Kou
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
12
|
Ding ZY, Tan Y, Peng Q, Zuo J, Li N. Novel applications of platelet concentrates in tissue regeneration (Review). Exp Ther Med 2021; 21:226. [PMID: 33603835 PMCID: PMC7851614 DOI: 10.3892/etm.2021.9657] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have explored the suitability of biocompatible materials in regenerative medicine. Platelet concentrates are derived from centrifuged blood and are named according to their biological characteristics, such as platelet-rich plasma, platelet-rich fibrin and concentrated growth factor. Platelet concentrates have gained considerable attention in soft and hard tissue engineering. Indeed, multiple components of autologous platelet concentrates, such as growth factors, fibrin matrix and platelets, serve essential roles in wound healing. Current studies are focused on cutting-edge strategies to meet the requirements for tissue restoration by improving the properties of autologous platelet concentrates. In the present review, applications of platelet concentrates for tissue engineering are discussed, presenting a selection of recent advances and novel protocols. In addition, several aspects of these strategies, such as the advantages of lyophilized platelet concentrates and the combination of platelet concentrates with biomaterials, stem cells or drugs are discussed. The present review aims to summarize novel strategies using platelet concentrates to improve the outcomes of wound healing.
Collapse
Affiliation(s)
- Zhen-Yu Ding
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Tan
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Peng
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Zuo
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Hexter AT, Sanghani-Kerai A, Heidari N, Kalaskar DM, Boyd A, Pendegrass C, Rodeo SA, Haddad FS, Blunn GW. Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2021; 29:3678-3688. [PMID: 33331973 PMCID: PMC8514355 DOI: 10.1007/s00167-020-06392-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI). METHODS Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal-noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon-bone healing, respectively. Spearman's rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed. RESULTS The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = - 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ. CONCLUSIONS BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.
Collapse
Affiliation(s)
- Adam T Hexter
- Division of Surgery and Interventional Science, University College London (UCL), London, UK.
- Institute of Orthopaedics and Musculoskeletal Sciences, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, London, HA7 4LP, UK.
| | - Anita Sanghani-Kerai
- Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Nima Heidari
- Royal London Hospital and Orthopaedic Specialists (OS), London, UK
| | - Deepak M Kalaskar
- Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Ashleigh Boyd
- Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Catherine Pendegrass
- Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | | | | | | |
Collapse
|
14
|
Ultrasound-guided platelet-rich plasma injection and multimodality ultrasound examination of peripheral nerve crush injury. NPJ Regen Med 2020; 5:21. [PMID: 33298932 PMCID: PMC7680141 DOI: 10.1038/s41536-020-00101-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ultrasound-guided platelet-rich plasma (PRP) injection is able to make up for the limitations of applying a single growth factor. The goal of this study was to investigate the effects of serial ultrasound-guided PRP injections of the appropriate concentration on the treatment of sciatic nerve crush injury, and explore the value of multimodality ultrasound techniques in evaluating the prognosis of crushed peripheral nerve. In vitro, optimal concentration of PRP (from 150%, 250%, 450%, and 650%) was screened due for its maximal effect on proliferation and neurotrophic function of Schwann cells (SCs). In vivo, ninety rabbits were equally and randomly divided into normal control, model, PRP-2.5×, PRP-4.5×, and PRP-6.5× groups. The neurological function and electrophysiological recovery evaluation, and the comparison of the multimodality ultrasound evaluation with the histological results of sciatic nerve crush injury were performed to investigate the regenerative effects of PRP at different concentrations on the sciatic nerve crush injury. Our results showed that the PRP with a 4.5-fold concentration of whole blood platelets could significantly stimulate the proliferation and secretion of SCs and nerve repair. The changes in stiffness and blood perfusion were positively correlated with the collagen area percentage and VEGF expression in the injured nerve, respectively. Thus, serial ultrasound-guided PRP injections at an appropriate concentration accelerates the recovery of axonal function. Multimodality ultrasound techniques provide a clinical reference for prognosis by allowing the stiffness and microcirculation perfusion of crush-injured peripheral nerves to be quantitatively evaluated.
Collapse
|
15
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
16
|
Gado SE, EL-Banna HS. Efficacy of platelet-rich plasma injection in mild and moderate carpal tunnel syndrome: randomized control study. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2020. [DOI: 10.1186/s43166-020-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Carpal tunnel syndrome (CTS) is the most common peripheral entrapment neuropathy. Typical symptoms and signs include numbness, tingling, pain, or burning sensation in the digits supplied by the median nerve and/or nocturnal paresthesia. Treatments of CTS range from conservative measures to surgical decompression of the median nerve.
Results
The PRP group showed a statistically significant reduction in the visual analog scale, Boston Carpal Tunnel Syndrome Questionnaire, for the severity and the functional capacity scores, and cross-sectional area of the median nerve compared to those of control group 3 months post-treatment (p < 0.05).
Conclusions
Platelet-rich plasma injection in CTS relieves pain and symptom severity and improves functional status but not significantly improve the electrophysiological parameters.
Collapse
|
17
|
Catapano M, Catapano J, Borschel G, Alavinia SM, Robinson LR, Mittal N. Effectiveness of Platelet-Rich Plasma Injections for Nonsurgical Management of Carpal Tunnel Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch Phys Med Rehabil 2020; 101:897-906. [DOI: 10.1016/j.apmr.2019.10.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
|
18
|
Trull-Ahuir C, Sala D, Chismol-Abad J, Vila-Caballer M, Lisón JF. Efficacy of platelet-rich plasma as an adjuvant to surgical carpal ligament release: a prospective, randomized controlled clinical trial. Sci Rep 2020; 10:2085. [PMID: 32034241 PMCID: PMC7005701 DOI: 10.1038/s41598-020-59113-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study is to evaluate the efficiency of local platelet-rich plasma (PRP) injection as an adjuvant treatment after carpal ligament release. We conducted a prospective randomized, triple-blinded, controlled trial. Fifty participants with mild to extreme carpal tunnel syndrome (CTS) were randomly assigned either to the PRP (n = 25) or the platelet-poor plasma (PPP, n = 25) group. After performing open surgical release of the carpal ligament, the inside of the carpal tunnel was irrigated with 3 mL of PRP or PPP according to each participant’s group allocation. The primary outcome was hand grip strength (HGS). Secondary outcomes were the time taken off work after surgery (in days) and scores on the Wong–Baker Faces Scale, Boston Carpal Tunnel Questionnaire, and Southampton Wound Assessment Scale. We evaluated patients before treatment and at 6-weeks. As expected, the pain levels, symptom severity, and functional status improved in all the patients after surgery. However, intragroup analysis revealed that only the participants in the PRP group had regained their pre-operative HGS levels at 6-weeks follow-up. These findings indicate that PRP is an effective adjuvant treatment in patients with mild to severe CTS who require surgery.
Collapse
Affiliation(s)
- Carmen Trull-Ahuir
- Department of Nursing, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Diego Sala
- Department of Orthopedic Surgery and Traumatology, Umivale MATEPSSN.15, Valencia, Spain
| | - Joaquín Chismol-Abad
- Department of Orthopedic Surgery and Traumatology, Umivale MATEPSSN.15, Valencia, Spain
| | - Marian Vila-Caballer
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - Juan Francisco Lisón
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain. .,Centre of Physiopathology of Obesity and Nutrition (CIBERobn), CB06/03 Carlos III Health Institute, Valencia, Spain.
| |
Collapse
|
19
|
Anitua E, Alkhraisat MH. The adjuvant use of plasma rich in growth factors in the inferior alveolar nerve repositioning technique. Heliyon 2019; 5:e02965. [PMID: 31890946 PMCID: PMC6926256 DOI: 10.1016/j.heliyon.2019.e02965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose To describe the outcomes of the adjuvant use of plasma rich in growth factors (PRGF) in the inferior alveolar nerve repositioning surgery. Material and methods A retrospective report of three cases was conducted in a single private dental clinic. The variables were the residual alveolar bone height, the surgical complications, the occurrence of neurosensory complications, the marginal bone stability and the implant survival. A descriptive statistical analysis was performed. Results Three inferior alveolar repositioning were performed with the adjuvant use of PRGF. The residual alveolar bone height was 2.2 ± 0.14 mm. All patients underwent uneventful healing with no symptoms of neurosensory complications neither implant failure. The marginal bone loss was 0.1 ± 0.4 mm Conclusions The preventative and adjuvant use of PRGF in inferior alveolar nerve repositioning need to be assessed in prospective studies with a larger sample size.
Collapse
|
20
|
Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2019; 317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress. The current article serves as a comprehensive, in-depth perspective on peripheral nerve regeneration, particularly nerve guidance conduits and drug delivery strategies. A detailed background of peripheral nerve injury and repair pathology, and an in-depth look into augmented nerve regeneration, nerve guidance conduits, and drug delivery strategies provide a state-of-the-art perspective on the field.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
21
|
Zhu Y, Jin Z, Fang J, Wang J, Wang Y, Song Q, Tian X, Zhang Y, Xie F, Chen W, Peng N, Peng J, Luo Y, Wang Y. Platelet-Rich Plasma Combined with Low-Dose Ultrashort Wave Therapy Accelerates Peripheral Nerve Regeneration. Tissue Eng Part A 2019; 26:178-192. [PMID: 31516089 DOI: 10.1089/ten.tea.2019.0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Finding treatments that accelerate peripheral nerve regeneration, prolongation, and functional recovery remains a challenging task. Platelet-rich plasma (PRP) contains numerous growth factors and active proteins, and low-dose ultrashort waves (USWs) stimulate the formation of nerve-nourishing vessels, which are powerful for nerve regeneration. The goal of this study was to evaluate the synergistic effects of serial ultrasound-guided PRP injections combined with low-dose USWs radiation on peripheral nerve regeneration in a crush injury model. Fifty rabbits were equally and randomly divided into normal control, model, USW, PRP, and PRP+USW groups. The neurological function, electrophysiological recovery, and histological and morphological evaluation of regenerated nerves, as well as a targeted muscle recovery assessment, were performed to investigate the regenerative effect of PRP combined with USW therapy. Our results showed that the PRP+USW group had the better early axonal regeneration and displayed the earliest positive compound muscle action potential among the treatment groups. At postintervention week 12, a histological evaluation showed similar expression of the S-100 protein in the PRP+USW and normal control groups. Moreover, the morphological assessment revealed a significant increase in the myelinated nerve fiber density and diameter and myelin sheath thickness compared with the USW and PRP groups. The morphometry of the target muscles indicated the lowest reduction in the percent volume in the PRP+USW group, and an ultrasound examination of the targeted muscle showed the best improvement in stiffness and perfusion parameters at 12 weeks after crush injury. Thus, serial ultrasound-guided PRP injections combined with low-dose USW radiation exert a synergistic effect on accelerating functional axon recovery and decreasing atrophy of the target muscles in a crush injury model. Impact Statement This research describes that the application of platelet-rich plasma combined with low-dose ultrashort waves treatment exert a synergistic effect on accelerating peripheral nerve regeneration. With the extensive use of platelet-rich plasma and physical factors in regenerative medicine or clinical rehabilitation medicine, our findings may help establish effective strategies for repairing peripheral nerve injury.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Medical College of Nankai University, Tianjin, China.,Department of Ultrasound, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhuang Jin
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China.,General hospital of Northern Theater Command, Liaoning, China
| | - Jie Fang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Tian
- Medical College of Nankai University, Tianjin, China.,Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Medical College of Nankai University, Tianjin, China.,Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Fang Xie
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Wei Chen
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Nan Peng
- Department of Geriatric Rehabilitation, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Yukun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome. Clin Rheumatol 2019; 38:3643-3654. [DOI: 10.1007/s10067-019-04719-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022]
|
23
|
Atwa ET, Esh AM, Abd El Al IT, Awad YM. Platelet-rich plasma versus corticosteroid injections for carpal tunnel syndrome: Clinical and electrophysiological study. EGYPTIAN RHEUMATOLOGIST 2019. [DOI: 10.1016/j.ejr.2018.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 2018; 192:440-460. [PMID: 30500725 DOI: 10.1016/j.biomaterials.2018.11.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
The healing of vascularized mammalian tissue injuries initiate with hemostasis and clotting as part of biological defense system leading to the formation of a fibrin clot in which activated platelets are trapped to quickly stop bleeding and destroy microbials. In order to harness the therapeutic potential of biomolecules secreted by platelets and stemmed from plasma, blood deconstruction has allowed to yield autologous platelet-and plasma-derived protein fibrin scaffold. The autologous growth factors and microparticles stemmed from platelets and plasma, interact with fibrin, extracellular matrix, and tissue cells in a combinatorial, synergistic, and multidirectional way on mechanisms governing tissue repair. This interplay will induce a wide range of cell specifications during inflammation and repair process including but not limited to fibrogenesis, angiogenesis, and immunomodulation. As biology-as-a-drug approach, autologous platelet-and plasma-derived protein fibrin scaffold is emerging as a safe and efficacious natural human-engineered growth factor delivery system to repair musculoskeletal tissues, and skin and corneal ulcers and burns. In doing so, it acts as therapeutic agent not perfect but close to biological precision. However, this autologous, biocompatible, biodegradable, and long in vivo lasting strategy faces several challenges, including its non-conventional single dose-response effect, the lack of standardization in its preparation and application, and the patient's biological features. In this review, we give an account of the main events of tissue repair. Then, we describe the procedure to prepare autologous platelet-and plasma-derived protein fibrin scaffolds, and the rationale behind these biomaterials, and finally, we highlight the significance of strategic accuracy in their application.
Collapse
|
25
|
Intraoperative Local Administration of Platelet-Rich Plasma (PRP) during Neurolysis Surgery for the Treatment of Digital Nerve Crush Injury. Case Rep Orthop 2018; 2018:1275713. [PMID: 30327740 PMCID: PMC6171255 DOI: 10.1155/2018/1275713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
The digital nerves are important for normal hand function. In addition to conventional therapies such as neurolysis, direct repair, and auto/allografts, new treatments administering growth factors and cells for promoting nerve regeneration exist. Platelet-rich plasma (PRP), an autologous product with proven therapeutic effects for musculoskeletal disorders, is a new treatment option for peripheral nerve injury. We hypothesized that PRP could stimulate healing of digital nerve injuries. In the current case report, intraoperative local administration of PRP was performed during neurolysis surgery for a healthy 28-year-old woman with digital nerve crush injury. Five weeks postinjury, surgery was performed due to severe uncontrollable neuropathic pain and no sensory nerve action potential derivation of the index finger. Therapeutic effects were assessed by physical examination, visual analog scale for pain, and nerve conduction study. Postoperatively, early neuropathic pain relief and good functional recovery were obtained with no PRP-related adverse events. This case report demonstrates the therapeutic potential of intraoperative PRP to enhance the healing process of nerve crush injury in the acute phase and to decrease the neuropathic pain, thus enhancing healing of peripheral nerve crush injury.
Collapse
|
26
|
Torul D, Bereket MC, Onger ME, Altun G. Comparison of the Regenerative Effects of Platelet-Rich Fibrin and Plasma Rich in Growth Factors on Injured Peripheral Nerve: An Experimental Study. J Oral Maxillofac Surg 2018; 76:1823.e1-1823.e12. [PMID: 29763577 DOI: 10.1016/j.joms.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/30/2018] [Accepted: 04/10/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF) on peripheral nerve injury in the early period of healing. MATERIAL AND METHODS Thirty Wistar albino rats were used in this study. Rats were divided into control (C), damaged (D), PRF, and PRGF groups. The left sciatic nerves of each group were identified as group C. Crush-type injury was performed on the right sciatic nerves of the D, PRF, and PRGF groups. In the PRF and PRGF groups, blood 2 mL was obtained to prepare the PRF and PRGF and the biomaterials were applied to the injured nerve area. After 8 weeks, functional, electrophysiologic, and stereological evaluations were performed. RESULTS For the electrophysiologic evaluation, the latency and amplitude values in the D, PRF, and PRGF groups were significantly lower than those in the C group (P > .05). According to the sciatic functional index result, there were significant differences between groups D and PRF and between groups D and PRGF (P = .000). For the stereological evaluations, although no significant difference was observed between the PRGF and C groups (P > .05), a significant difference was observed among the D, PRF, and PRGF groups for myelinated axon number. There were significant differences between groups D and PRF and between groups D and PRGF for axon area (P = .021 and .001, respectively). No significant difference was observed among the D, PRF, and PRGF groups for myelin sheath thickness and ratio of axon area to myelin sheath thickness (P > .05). CONCLUSIONS The results of this study suggest that PRGF increases nerve regeneration in the early period of healing and that the limited early action of PRF should be re-evaluated in the late period.
Collapse
Affiliation(s)
- Damla Torul
- Research Assistant, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey.
| | - Mehmet Cihan Bereket
- Associate Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Mehmet Emin Onger
- Assistant Professor, Department of Histology and Embryology, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Gamze Altun
- Research Assistant, Department of Histology and Embryology, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
27
|
Raeissadat SA, Karimzadeh A, Hashemi M, Bagherzadeh L. Safety and efficacy of platelet-rich plasma in treatment of carpal tunnel syndrome; a randomized controlled trial. BMC Musculoskelet Disord 2018; 19:49. [PMID: 29433485 PMCID: PMC5810049 DOI: 10.1186/s12891-018-1963-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Carpal tunnel syndrome is the most common peripheral entrapment neuropathy, for which conservative treatments are the first measures taken. However, these measures are not usually sufficient. Recently major attention has been drawn to platelet-rich plasma for its possible effects on axon regeneration and neurological recovery. Although few studies have evaluated the effects of this treatment in carpal tunnel syndrome, further investigation is required to reach concrete conclusion. METHODS In this randomized controlled trial, women referring to the physical medicine and rehabilitation clinic at Shahid Modarres Hospital during 2016 with a diagnosis of mild and moderate idiopathic carpal tunnel syndrome were chosen. They were randomly assigned to two groups: (i) a control group using only a wrist splint, and (ii) a platelet-rich plasma group that received wrist splints along with a single local injection of platelet-rich plasma. The outcome measures were assessed via Visual Analogue Scale, the Boston Carpal Tunnel Syndrome Questionnaire and electrophysiological findings including the peak latency of sensory nerve action potential and the onset latency of the compound muscle action potential. RESULTS A total of 41 women were included (20 wrists as control group) and (21 wrists as platelet-rich plasma group). Before treatment there were no significant differences between the two groups except for the median peak latency of sensory nerve action potential which was significantly higher among the patients in the platelet-rich plasma group (p = 0.03). All the measured variables significantly decreased in both groups after 10 weeks of treatment except for the median onset latency of the compound muscle action potential (p = 0.472). Finally, the changes in neither of the evaluated outcome measures were found to significantly differ between the two groups, even when the analyses were adjusted for age of the patients. CONCLUSION The findings of this study showed that in a relatively short period of time after treatment, a single injection of platelet-rich plasma in the wrist does not significantly add to the effects of conservative treatment with wrist splints, in regards to the women pain and symptom severity, functional status and electrophysiological parameters. TRIAL REGISTRATION The trial has been retrospectively registered with an ID: IRCT2017041513442N13 (Date of registration: 2017-06-19).
Collapse
Affiliation(s)
- Seyed Ahmad Raeissadat
- Physical Medicine and Rehabilitation Research Center, Clinical Research Development Center of Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Karimzadeh
- Physical Medicine & Rehabilitation department, Imam Hosein hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Hashemi
- Anesthesiology Research Center, Shahid beheshti university of medical sciences, Tehran, Iran
| | - Leila Bagherzadeh
- Physical Medicine and Rehabilitation Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
García de Cortázar U, Padilla S, Lobato E, Delgado D, Sánchez M. Intraneural Platelet-Rich Plasma Injections for the Treatment of Radial Nerve Section: A Case Report. J Clin Med 2018; 7:E13. [PMID: 29382110 PMCID: PMC5852429 DOI: 10.3390/jcm7020013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/05/2023] Open
Abstract
The radial nerve is the most frequently injured nerve in the upper extremity. Numerous options in treatment have been described for radial nerve injury, such as neurolysis, nerve grafts, or tendon transfers. Currently, new treatment options are arising, such as platelet-rich plasma (PRP), an autologous product with proved therapeutic effect for various musculoskeletal disorders. We hypothesized that this treatment is a promising alternative for this type of nerve pathology. The patient was a healthy 27-year-old man who suffered a deep and long cut in the distal anterolateral region of the right arm. Forty-eight hours after injury, an end-to-end suture was performed without a microscope. Three months after the surgery, an electromyogram (EMG) showed right radial nerve neurotmesis with no tendency to reinnervation. Four months after the trauma, serial intraneural infiltrations of PRP were conducted using ultrasound guidance. The therapeutic effect was assessed by manual muscle testing and by EMG. Fourteen months after the injury and 11 months after the first PRP injection, functional recovery was achieved. The EMG showed a complete reinnervation of the musculature of the radial nerve dependent. The patient remains satisfied with the result and he is able to practice his profession. CONCLUSIONS PRP infiltrations have the potential to enhance the healing process of radial nerve palsy. This case report demonstrates the therapeutic potential of this technology for traumatic peripheral nerve palsy, as well as the apt utility of US-guided PRP injections.
Collapse
Affiliation(s)
| | - Sabino Padilla
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI, University of the Basque Country, Vitoria, 01007 Vitoria-Gasteiz, Spain.
| | - Enrique Lobato
- Service of Orthopedic Surgery and Traumatology, Basurto Hospital, 48013 Bilbao, Spain.
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas San José, 01008 Vitoria-Gasteiz, Spain.
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, 01008 Vitoria-Gasteiz, Spain.
- Arthroscopic Surgery Unit, Hospital Vithas San José, 01008 Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
Ikumi A, Hara Y, Yoshioka T, Kanamori A, Yamazaki M. Effect of local administration of platelet-rich plasma (PRP) on peripheral nerve regeneration: An experimental study in the rabbit model. Microsurgery 2017; 38:300-309. [DOI: 10.1002/micr.30263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 09/19/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Akira Ikumi
- Department of orthopaedic surgery, Faculty of medicine; University of Tsukuba; Ibaraki Japan
| | - Yuki Hara
- Department of orthopaedic surgery, Faculty of medicine; University of Tsukuba; Ibaraki Japan
| | - Tomokazu Yoshioka
- Department of orthopaedic surgery, Faculty of medicine; University of Tsukuba; Ibaraki Japan
| | - Akihiro Kanamori
- Department of orthopaedic surgery, Faculty of medicine; University of Tsukuba; Ibaraki Japan
| | - Masashi Yamazaki
- Department of orthopaedic surgery, Faculty of medicine; University of Tsukuba; Ibaraki Japan
| |
Collapse
|
30
|
Anitua E, Prado R, Orive G. Plasma rich in growth factors in dogs: Two sides of the same coin. Dent Res J (Isfahan) 2017; 14:427-428. [PMID: 29238383 PMCID: PMC5713068 DOI: 10.4103/1735-3327.218568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Department, BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- Regenerative Medicine Department, BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Gorka Orive
- Regenerative Medicine Department, BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
31
|
Garate A, Sánchez P, Delgado D, Bilbao AM, Muiños-López E, Granero-Moltó F, Orive G, Prosper F, Pedraz JL, Sánchez M. Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells. J Biomed Mater Res A 2017; 106:377-385. [PMID: 28960933 DOI: 10.1002/jbm.a.36247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023]
Abstract
In the field of tissue engineering, diverse types of bioscaffolds are being developed currently for osteochondral defect applications. In this work, a novel scaffold based on platelet rich plasma (PRP) and hyaluronic acid with mesenchymal stem cells (MSCs) has been evaluated to observe its effect on immobilized cells. The bioscaffolds were prepared by mixing different volumes of synovial fluid (SF) with PRP from patients obtaining three formulations at PRP-SF ratios of 3:1, 1:1 and 1:3 (v/v). The live/dead staining revealed that although the cell number of each type of bioscaffold was different, these this constructs provide cells with a suitable environment for their viability and proliferation. Moreover, immobilized MSCs showed their ability to secrete fibrinolytic enzymes, which vary depending on the fibrin amount of the scaffold. Immunohistochemical analysis revealed the positive staining for collagen type II in all cases, proving the biologic action of SF derived MSCs together with the suitable characteristics of the bioscaffold for chondrogenic differentiation. Considering all these aspects, this study demonstrates that these cells-based constructs represent an attractive method for cell immobilization, achieving completely autologous and biocompatible scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 377-385, 2018.
Collapse
Affiliation(s)
- Ane Garate
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Emma Muiños-López
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Felipe Prosper
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain.,Hematology and Cell Therapy department, University of Navarra Clinic, Pamplona, Spain
| | - José Luis Pedraz
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| |
Collapse
|
32
|
Transalveolar Osteotomy of the Mandibular Canal Wall for the Treatment of Severely Atrophied Posterior Mandible. J Oral Maxillofac Surg 2017; 75:1392-1401. [PMID: 28388398 DOI: 10.1016/j.joms.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Treatment of severe bone atrophy of the posterior mandible requires an advanced surgical bone augmentation technique. This report describes a minimally invasive approach for a residual alveolar height less than 5 mm. MATERIAL AND METHODS A retrospective case series was conducted in a single private dental clinic. Outcome variables were dental implant survival rate, intraoperative complications, occurrence of neurosensory disturbances, and marginal bone loss. Descriptive analysis was performed for patients' demographic data, postoperative healing, and implant details. Kaplan-Meier method was used to assess the implant survival rate. RESULTS The mean age of the 19 patients was 60 ± 13 years. Twenty-eight implants (5.5 mm long) were placed in a residual alveolar bone height of 4.5 ± 0.6 mm. The implant survival rate was 96% at 5-year follow-up. CONCLUSIONS Extra-short implants and transalveolar preparation of the inferior alveolar cortical bone could be a safe and effective treatment of severe mandibular atrophy.
Collapse
|
33
|
Huang Y, Bornstein MM, Lambrichts I, Yu HY, Politis C, Jacobs R. Platelet-rich plasma for regeneration of neural feedback pathways around dental implants: a concise review and outlook on future possibilities. Int J Oral Sci 2017; 9:1-9. [PMID: 28282030 PMCID: PMC5379164 DOI: 10.1038/ijos.2017.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 02/05/2023] Open
Abstract
Along with the development of new materials, advanced medical imaging and surgical techniques, osseointegrated dental implants are considered a successful and constantly evolving treatment modality for the replacement of missing teeth in patients with complete or partial edentulism. The importance of restoring the peripheral neural feedback pathway and thus repairing the lack of periodontal mechanoreceptors after tooth extraction has been highlighted in the literature. Nevertheless, regenerating the nerve fibers and reconstructing the neural feedback pathways around osseointegrated implants remain a challenge. Recent studies have provided evidence that platelet-rich plasma (PRP) therapy is a promising treatment for musculoskeletal injuries. Because of its high biological safety, convenience and usability, PRP therapy has gradually gained popularity in the clinical field. Although much remains to be learned, the growth factors from PRP might play key roles in peripheral nerve repair mechanisms. This review presents known growth factors contributing to the biological efficacy of PRP and illustrates basic and (pre-)clinical evidence regarding the use of PRP and its relevant products in peripheral nerve regeneration. In addition, the potential of local application of PRP for structural and functional recovery of injured peripheral nerves around dental implants is discussed.
Collapse
Affiliation(s)
- Yan Huang
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael M Bornstein
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Section of Dental Radiology and Stomatology, Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland.,Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Constantinus Politis
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Wu YT, Ho TY, Chou YC, Ke MJ, Li TY, Huang GS, Chen LC. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: A prospective randomized, single-blind controlled trial. Sci Rep 2017; 7:94. [PMID: 28273894 PMCID: PMC5427966 DOI: 10.1038/s41598-017-00224-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Recently, a few small reports with short follow-up period have shown clinical benefits of platelet-rich plasma (PRP) for peripheral neuropathy including one pilot study and one small, non-randomized trial in patients with carpal tunnel syndrome (CTS). Therefore, we conducted a randomized, single-blind, controlled trial to assess the 6-month effect of PRP in patients with CTS. Sixty patients with unilateral mild-to-moderate CTS were randomized into two groups of 30, namely the PRP and control groups. In the PRP group, patients were injected with one dose of 3 mL of PRP using ultrasound guidance and the control group received a night splint through the study period. The primary outcome measure was the visual analog scale (VAS) and secondary outcome measures included the Boston Carpal Tunnel Syndrome Questionnaire (BCTQ) score, the cross-sectional area (CSA) of the median nerve (MN), electrophysiological findings of the MN, and finger pinch strength. The evaluation was performed before treatment and at 1, 3, and 6 months post-injection. The PRP group exhibited a significant reduction in the VAS score, BCTQ score, and CSA of MN compared to the those of control group 6 months post-treatment (p < 0.05). Our study demonstrates that PRP is a safe modality that effectively relieves pain and improves disability in the patients with CTS.
Collapse
Affiliation(s)
- Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China.,Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Tsung-Yen Ho
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, No. 161, Sec. 6, Minquan East Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Ming-Jen Ke
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Tsung-Ying Li
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China.,Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China
| | - Liang-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu District, Taipei, Taiwan, Republic of China.
| |
Collapse
|
35
|
Sánchez M, Garate A, Delgado D, Padilla S. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair. Neural Regen Res 2017; 12:47-52. [PMID: 28250739 PMCID: PMC5319232 DOI: 10.4103/1673-5374.198973] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI), focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ane Garate
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Diego Delgado
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
36
|
Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Orive G, Padilla S. Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration. Expert Opin Biol Ther 2016; 17:197-212. [DOI: 10.1080/14712598.2017.1259409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| | - Diego Delgado
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Peio Sanchez
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
- Lab of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of The Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Sabino Padilla
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| |
Collapse
|
37
|
|