1
|
Alibeigian Y, Kalantari N, Ebrahimi Sadrabadi A, Kamali A, Raminfard S, Baghaban Eslaminejad M, Hosseini S. Incorporation of calcium phosphate cement into decellularized extracellular matrix enhances its bone regenerative properties. Colloids Surf B Biointerfaces 2024; 244:114175. [PMID: 39216442 DOI: 10.1016/j.colsurfb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels are engineered constructs that are widely-used in the field of regenerative medicine. However, the development of ECM-based hydrogels for bone tissue engineering requires enhancement in its osteogenic properties. For this purpose, we initially employed bone-derived dECM hydrogel (dECM-Hy) in combination with calcium phosphate cement (CPC) paste to improve the biological and structural properties of the dECM hydrogel. A decellularization protocol for bovine bone was developed to prepare dECM-Hy, and the mechanically-tuned dECM/CPC-Hy was built based on both rheological and mechanical characteristics. The dECM/CPC-Hy displayed a double swelling ratio and compressive strength. An interconnected structure with distinct hydroxyapatite crystals was evident in dECM/CPC-Hy. The expression levels of Alp, Runx2 and Ocn genes were upregulated in dECM/CPC-Hy compared to the dECM-Hy. A 14-day follow-up of the rats receiving subcutaneous implanted dECM-Hy, dECM/CPC-Hy and mesenchymal stem cells (MSCs)-embedded (dECM/CPC/MSCs-Hy) showed no toxicity, inflammatory factor expression or pathological changes. Radiography and computed tomography (CT) of the calvarial defects revealed new bone formation and elevated number of osteoblasts-osteocytes and osteons in dECM/CPC-Hy and dECM/CPC/MSCs-Hy compared to the control groups. These findings indicate that the dECM/CPC-Hy has substantial potential for bone tissue engineering.
Collapse
Affiliation(s)
- Yalda Alibeigian
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloofar Kalantari
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Amir Kamali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Samira Raminfard
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Gultian KA, Gandhi R, Sarin K, Sladkova-Faure M, Zimmer M, de Peppo GM, Vega SL. Human induced mesenchymal stem cells display increased sensitivity to matrix stiffness. Sci Rep 2022; 12:8483. [PMID: 35589731 PMCID: PMC9119934 DOI: 10.1038/s41598-022-12143-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals.
Collapse
Affiliation(s)
- Kirstene A Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Khushi Sarin
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY, 10019, USA
| | | | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
3
|
Cichoń E, Mielan B, Pamuła E, Ślósarczyk A, Zima A. Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Adv 2021; 11:23908-23921. [PMID: 35479031 PMCID: PMC9036830 DOI: 10.1039/d1ra04266a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022] Open
Abstract
A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants). In this study, foamed calcium phosphate cements (fCPCs) intended for in situ use were fabricated by a surfactant-assisted foaming process. Three different surface active agents, Tween 20, Tween 80 and Tetronic 90R4, were used. The amount of surfactant, based on its critical micelle concentration and cytotoxicity as well as foaming method, was determined. It has been established that in order to avoid cytotoxic effects the concentration of all applied surfactants in the cement liquid phases should not exceed 1.25 g L−1. It was found that Tetronic 90R4 had the lowest cytotoxicity whereas Tween 20 had the highest. The influence of the type of surfactant used in the fabrication process of bioactive macroporous cement on the physicochemical and biological properties of fCPCs was studied. The obtained materials reached higher than 50 vol% open porosity and possessed compressive strength which corresponds to the values for cancellous bone. The highest porosity and compressive strength was found for the material with the addition of Tween 80. In vitro investigations proved the chemical stability and high bioactive potential of the examined materials. A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants).![]()
Collapse
Affiliation(s)
- Ewelina Cichoń
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Bartosz Mielan
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Anna Ślósarczyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| |
Collapse
|
4
|
A biomimetic engineered bone platform for advanced testing of prosthetic implants. Sci Rep 2020; 10:22154. [PMID: 33335113 PMCID: PMC7747643 DOI: 10.1038/s41598-020-78416-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.
Collapse
|
5
|
Yao J, Liu Z, Ma W, Dong W, Wang Y, Zhang H, Zhang M, Sun D. Three-Dimensional Coating of SF/PLGA Coaxial Nanofiber Membranes on Surfaces of Calcium Phosphate Cement for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2970-2984. [PMID: 33463266 DOI: 10.1021/acsbiomaterials.9b01729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calcium phosphate cements (CPCs) have been widely used for the study of bone regeneration because of their excellent physical and chemical properties, but poor biocompatibility and lack of osteoinductivity limit potential clinical applications. To overcome these limitations, and based on our previous research, CPC scaffolds were prepared with CPC as the principal material and polyethylene glycol (PEG) as a porogen to introduce interconnected macropores. Using a bespoke electrospinning auxiliary receiver, silk fibroin (SF)/poly(lactide-co-glycolide) (PLGA) coaxial nanofibers containing dexamethasone (DXM) and recombinant human bone morphogenetic protein-2 (rhBMP2) were fabricated which were coated on the surface of the CPC. By comparing the surface morphology by SEM, hydrophilicity, results of FTIR spectroscopy, and mechanical properties of the composite materials fabricated using different electrospinning times (20, 40, 60 min), the CPC surface constructed by electrospinning for 40 min was found to exhibit the most appropriate physical and chemical properties. Therefore, composite materials were built for further study by electrospinning for 40 min. The osteogenic capacity of the SF/PLGA/CPC, SF-DXM/PLGA/CPC, and SF-DXM/PLGA-rhBMP2/CPC scaffolds was evaluated by in vitro cell culture with rat bone marrow mesenchymal stem cells (BMSCs) and using a rat cranial defect repair model. ALP activity, calcium deposition levels, upregulation of osteogenic genes, and bone regeneration in skull defects in rats with SF-DXM/PLGA-rhBMP2/CPC implants were significantly higher than in rats implanted with the other scaffolds. These results suggest that drug-loaded coaxial nanofiber coatings prepared on a CPC surface can continuously and effectively release bioactive drugs and further stimulate osteogenesis. Therefore, the SF-DXM/PLGA-rhBMP2/CPC scaffolds prepared in this study demonstrated the most significant potential for the treatment of bone defects.
Collapse
Affiliation(s)
- Jihang Yao
- Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
| | - Zhewen Liu
- Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
| | - Wendi Ma
- Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenying Dong
- Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yilong Wang
- Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haibo Zhang
- Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mei Zhang
- Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dahui Sun
- Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
6
|
Abstract
Mesenchymal stem cells (MSCs) have been used in therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. To foster commercialization and implementation of stem cells treatments, researchers have recently derived MSCs from human induced pluripotent stem cells (iMSCs). For therapeutic applications, human iMSCs must be produced in xeno-free culture conditions and following procedures that are compatible with the principles of Good Manufacturing Practice.
Collapse
|
7
|
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci 2019; 1460:77-87. [PMID: 31667884 PMCID: PMC7027566 DOI: 10.1111/nyas.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
To foster translation and commercialization of tissue-engineered products, preservation methods that do not significantly compromise tissue properties need to be designed and tested. Robust preservation methods will enable the distribution of tissues to third parties for research or transplantation, as well as banking of off-the-shelf products. We recently engineered bone grafts from induced pluripotent stem cells and devised strategies to facilitate a tissue-engineering approach to segmental bone defect therapy. In this study, we tested the effects of two potential preservation methods on the survival, quality, and function of tissue-engineered human bone. Engineered bone grafts were cultured for 5 weeks in an osteogenic environment and then stored in phosphate-buffered saline (PBS) solution at 4 °C or in Synth-a-Freeze™ at -80 °C. After 48 h, samples were warmed up in a water bath at 37 °C, incubated in osteogenic medium, and analyzed 1 and 24 h after revitalization. The results show that while storage in Synth-a-Freeze at -80 °C results in cell death and structural alteration of the extracellular matrix, hypothermic storage in PBS does not significantly affect tissue viability and integrity. This study supports the use of short-term hypothermic storage for preservation and distribution of high-quality tissue-engineered bone grafts for research and future clinical applications.
Collapse
Affiliation(s)
- Edmund Tam
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Madison McGrath
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Anaam Alostaad
- The New York Stem Cell Foundation Research Institute, New York, New York
| | | |
Collapse
|
8
|
McGrath M, Tam E, Sladkova M, AlManaie A, Zimmer M, de Peppo GM. GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Res Ther 2019; 10:11. [PMID: 30635059 PMCID: PMC6329105 DOI: 10.1186/s13287-018-1119-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Human mesenchymal stem cells are a strong candidate for cell therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. Yet, their scarcity, limited expansion potential, and age-associated functional decline restrict the ability to consistently manufacture large numbers of safe and therapeutically effective mesenchymal stem cells for routine clinical applications. To overcome these limitations and advance stem cell treatments using mesenchymal stem cells, researchers have recently derived mesenchymal progenitors from human-induced pluripotent stem cells. Human-induced pluripotent stem cell-derived progenitors resemble adult mesenchymal stem cells in morphology, global gene expression, surface antigen profile, and multi-differentiation potential, but unlike adult mesenchymal stem cells, it can be produced in large numbers for every patient. For therapeutic applications, however, human-induced pluripotent stem cell-derived progenitors must be produced without animal-derived components (xeno-free) and in accordance with Good Manufacturing Practice guidelines. Methods In the present study we investigate the effects of expanding mesodermal progenitor cells derived from two human-induced pluripotent stem cell lines in xeno-free medium supplemented with human platelet lysates and in a commercial high-performance Good Manufacturing Practice-compatible medium (Unison Medium). Results The results show that long-term culture in xeno-free and Good Manufacturing Practice-compatible media somewhat affects the morphology, expansion potential, gene expression, and cytokine profile of human-induced pluripotent stem cell-derived progenitors but supports cell viability and maintenance of a mesenchymal phenotype equally well as medium supplemented with fetal bovine serum. Conclusions The findings support the potential to manufacture large numbers of clinical-grade human-induced pluripotent stem cell-derived mesenchymal progenitors for applications in personalized regenerative medicine. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13287-018-1119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madison McGrath
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Edmund Tam
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA.
| |
Collapse
|
9
|
Miao Y, Chen Y, Liu X, Diao J, Zhao N, Shi X, Wang Y. Melatonin decorated 3D-printed beta-tricalcium phosphate scaffolds promoting bone regeneration in a rat calvarial defect model. J Mater Chem B 2019. [DOI: 10.1039/c8tb03361g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Xiao Liu
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology
- Guangzhou 510006
| | - Jingjing Diao
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology
- Guangzhou 510006
| | - Naru Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
| |
Collapse
|
10
|
Sladkova M, Cheng J, Palmer M, Chen S, Lin C, Xia W, Yu YE, Zhou B, Engqvist H, de Peppo GM. Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells. Tissue Eng Part A 2018; 25:288-301. [PMID: 30129897 DOI: 10.1089/ten.tea.2018.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT Decellularized tissue matrices are popular as scaffolding materials for tissue engineering application. However, it is unclear whether interspecies differences in tissue parameters influence the quality of tissue grafts that are engineered using human stem cells. In this study, decellularized cow and human bone scaffolds were compared for engineering bone grafts using human induced pluripotent stem cell-derived mesodermal progenitor cells and despite minor differences in architecture and mass composition, both scaffolds equally support cell viability and tissue mineralization. Decellularized cow bone scaffolds therefore represent a suitable and more affordable alternative for engineering human bone grafts for basic and applied research.
Collapse
Affiliation(s)
- Martina Sladkova
- 1 The New York Stem Cell Foundation Research Institute, New York, New York
| | - Jiayi Cheng
- 1 The New York Stem Cell Foundation Research Institute, New York, New York
| | - Michael Palmer
- 2 Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | - Silvia Chen
- 3 LifeNet Health Foundation, Virginia Beach, Virginia
| | - Charles Lin
- 1 The New York Stem Cell Foundation Research Institute, New York, New York
| | - Wei Xia
- 2 Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | - Yue Eric Yu
- 4 Department of Biomedical Engineering, Columbia University, New York, New York
| | - Bin Zhou
- 4 Department of Biomedical Engineering, Columbia University, New York, New York
| | - Håkan Engqvist
- 2 Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
11
|
Sladkova M, Alawadhi R, Jaragh Alhaddad R, Esmael A, Alansari S, Saad M, Mulla Yousef J, Alqaoud L, de Peppo GM. Segmental Additive Tissue Engineering. Sci Rep 2018; 8:10895. [PMID: 30022102 PMCID: PMC6052158 DOI: 10.1038/s41598-018-29270-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023] Open
Abstract
Segmental bone defects caused by trauma and disease represent a major clinical problem worldwide. Current treatment options are limited and often associated with poor outcomes and severe complications. Bone engineering is a promising alternative solution, but a number of technical challenges must be addressed to allow for effective and reproducible construction of segmental grafts that meet the size and geometrical requirements needed for individual patients and routine clinical applications. It is important to devise engineering strategies and standard operating procedures that make it possible to scale up the size of bone-engineered grafts, minimize process and product variability, and facilitate technology transfer and implementation. To address these issues, we have combined traditional and modular tissue engineering approaches in a strategy referred to as Segmental Additive Tissue Engineering (SATE). To demonstrate this approach, a digital reconstruction of a rabbit femoral defect was partitioned transversally to the longitudinal axis into segments (modules) with discoidal geometry and defined thickness to enable protocol standardization and effective tissue formation in vitro. Bone grafts corresponding to each segment were then engineered using biomimetic scaffolds seeded with human induced pluripotent stem cell-derived mesodermal progenitors (iPSC-MPs) and a novel perfusion bioreactor with universal design. The SATE strategy enables the effective and reproducible engineering of segmental bone grafts for personalized skeletal reconstruction, and will facilitate technology transfer and implementation of a tissue engineering approach to segmental bone defect therapy.
Collapse
Affiliation(s)
- Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Rawan Alawadhi
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Asmaa Esmael
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Shoug Alansari
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Munerah Saad
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Lulwa Alqaoud
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | |
Collapse
|