1
|
Chen X, Hu X, Jiang J, Tao J, Liu L, Fang S, Shen Y, Hu Q, Liu C. BAF45D regulates spinal cord neural stem/progenitor cell fate through the SMAD-PAX6 axis. Genes Dis 2022; 10:366-369. [DOI: 10.1016/j.gendis.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
|
2
|
Kobayashi Y, Hayashi R, Shibata S, Quantock AJ, Nishida K. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Res 2020; 46:101868. [PMID: 32603880 PMCID: PMC7347012 DOI: 10.1016/j.scr.2020.101868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
We sought to elucidate how and when the ocular surface ectoderm commits to its differentiation into the corneal epithelium in eye development from human induced pluripotent stem cells (hiPSCs) under the influence of WNT signaling and the actions of BMP4. These signals are key drivers ocular surface ectodermal cell fate determination. It was discovered that secreted frizzled related protein-2 (SFRP2) and Dickkopf1 (DKK1), which are expressed in neural ectoderm, are both influential in the differentiation of hiPSCs, where they act as canonical WNT antagonists. BMP4, moreover, was found to simultaneously initiate non-neural ectodermal differentiation into a corneal epithelial lineage. Combined treatment of hiPSCs with exogenous BMP4 aligned to WNT inhibition for the initial four days of differentiation increased the ocular surface ectodermal cell population and induced a corneal epithelial phenotype. Specification of a surface ectodermal lineage and its fate is thus determined by a fine balance of BMP4 exposure and WNT inhibition in the very earliest stages of human eye development.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shun Shibata
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co Ltd, Osaka, Osaka 544-8666, Japan
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|