1
|
Scuglia M, Frazão LP, Miranda A, Martins A, Barbosa-Sequeira J, Coimbra D, Longatto-Filho A, Reis RL, Nogueira-Silva C, Neves NM, Correia-Pinto J. Diaphragmatic hernia repair porcine model to compare the performance of biodegradable membranes against Gore-Tex ®. Pediatr Surg Int 2023; 40:7. [PMID: 37999778 PMCID: PMC10673990 DOI: 10.1007/s00383-023-05584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patch repair of congenital diaphragmatic hernia (CDH) using Gore-Tex® is associated with infection, adhesions, hernia recurrence, long-term musculoskeletal sequels and poor tissue regeneration. To overcome these limitations, the performance of two novel biodegradable membranes was tested to repair CDH in a growing pig model. METHODS Twelve male pigs were randomly assigned to 3 different groups of 4 animals each, determined by the type of patch used during thoracoscopic diaphragmatic hernia repair (Gore-Tex®, polycaprolactone electrospun membrane-PCLem, and decellularized human chorion membrane-dHCM). After 7 weeks, all animals were euthanized, followed by necropsy for diaphragmatic evaluation and histological analysis. RESULTS Thoracoscopic defect creation and diaphragmatic repair were performed without any technical difficulty in all groups. However, hernia recurrence rate was 0% in Gore-Tex®, 50% in PCLem and 100% in dHCM groups. At euthanasia, Gore-Tex® patches appeared virtually unchanged and covered with a fibrotic capsule, while PCLem and dHCM patches were replaced by either floppy connective tissue or vascularized and floppy regenerated membranous tissue, respectively. CONCLUSION Gore-Tex® was associated with a higher survival rate and lower recurrence. Nevertheless, the proposed biodegradable membranes were associated with better tissue integration when compared with Gore-Tex®.
Collapse
Affiliation(s)
- Marianna Scuglia
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Laura P Frazão
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Alice Miranda
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Joana Barbosa-Sequeira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Diana Coimbra
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pathology (LIM-14), University of São Paulo School of Medicine, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Nuno M Neves
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| |
Collapse
|
2
|
Andreas MN, Boehm AK, Tang P, Moosburner S, Klein O, Daneshgar A, Gaßner JMGV, Raschzok N, Haderer L, Wulsten D, Rückert JC, Spuler S, Pratschke J, Sauer IM, Hillebrandt KH. Development and systematic evaluation of decellularization protocols in different application models for diaphragmatic tissue engineering. BIOMATERIALS ADVANCES 2023; 153:213493. [PMID: 37418932 DOI: 10.1016/j.bioadv.2023.213493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Tissue engineered bioscaffolds based on decellularized composites have gained increasing interest for treatment of various diaphragmatic impairments, including muscular atrophies and diaphragmatic hernias. Detergent-enzymatic treatment (DET) constitutes a standard strategy for diaphragmatic decellularization. However, there is scarce data on comparing DET protocols with different substances in distinct application models in their ability to maximize cellular removal while minimizing extracellular matrix (ECM) damage. METHODS We decellularized diaphragms of male Sprague Dawley rats with 1 % or 0.1 % sodium dodecyl sulfate (SDS) and 4 % sodium deoxycholate (SDC) by orbital shaking (OS) or retrograde perfusion (RP) through the vena cava. We evaluated decellularized diaphragmatic samples by (1) quantitative analysis including DNA quantification and biomechanical testing, (2) qualitative and semiquantitative analysis by proteomics, as well as (3) qualitative assessment with macroscopic and microscopic evaluation by histological staining, immunohistochemistry and scanning electron microscopy. RESULTS All protocols produced decellularized matrices with micro- and ultramorphologically intact architecture and adequate biomechanical performance with gradual differences. The proteomic profile of decellularized matrices contained a broad range of primal core and ECM-associated proteins similar to native muscle. While no outstanding preference for one singular protocol was determinable, SDS-treated samples showed slightly beneficial properties in comparison to SDC-processed counterparts. Both application modalities proved suitable for DET. CONCLUSION DET with SDS or SDC via orbital shaking or retrograde perfusion constitute suitable methods to produce adequately decellularized matrices with characteristically preserved proteomic composition. Exposing compositional and functional specifics of variously treated grafts may enable establishing an ideal processing strategy to sustain valuable tissue characteristics and optimize consecutive recellularization. This aims to design an optimal bioscaffold for future transplantation in quantitative and qualitative diaphragmatic defects.
Collapse
Affiliation(s)
- Marco N Andreas
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Agnes K Boehm
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Assal Daneshgar
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Joseph M G V Gaßner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nathanael Raschzok
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Luna Haderer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dag Wulsten
- Julius-Wolff-Institut für Biomechanik und Muskuloskeletale Regeneration, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Jens-Carsten Rückert
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany.
| | - Karl H Hillebrandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Boehm AK, Hillebrandt KH, Dziodzio T, Krenzien F, Neudecker J, Spuler S, Pratschke J, Sauer IM, Andreas MN. Tissue engineering for the diaphragm and its various therapeutic possibilities – A Systematic Review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Agnes K Boehm
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Karl H Hillebrandt
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Tomasz Dziodzio
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Felix Krenzien
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Jens Neudecker
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Simone Spuler
- Muscle Research Unit Experimental and Clinical Research Center Charité Universitätsmedizin Berlin and Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtz‐Gemeinschaft Lindenberger Weg 80 Berlin 13125 Germany
| | - Johann Pratschke
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Igor M Sauer
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Marco N Andreas
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| |
Collapse
|
5
|
A Systematic Review Examining the Experimental Methodology Behind In Vivo Testing of Hiatus Hernia and Diaphragmatic Hernia Mesh. J Gastrointest Surg 2022; 26:684-692. [PMID: 34935102 PMCID: PMC8927034 DOI: 10.1007/s11605-021-05227-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/06/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety, but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. METHOD This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. Forty-four articles were identified and underwent abstract review, where 22 were excluded. Four further studies were excluded after full-text review-leaving 18 to undergo data extraction. RESULTS Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. Five studies undertook mechanical testing on tissue samples-all uniaxial in nature. Testing strip widths ranged from 1-20 mm (median 3 mm). Testing speeds varied from 1.5-60 mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularisation and macrophages respectively (n = 9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. Eleven studies assessed adhesion formation, of which 8 used one of four scoring systems. Eight studies measured mesh shrinkage. DISCUSSION In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation.
Collapse
|
6
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Talon I, Schneider A, Ball V, Hemmerle J. Polydopamine Functionalization: A Smart and Efficient Way to Improve Host Responses to e-PTFE Implants. Front Chem 2019; 7:482. [PMID: 31338362 PMCID: PMC6629787 DOI: 10.3389/fchem.2019.00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Among the different materials used as protheses for the treatment of Congenital Diaphragmatic Hernia, expanded polytetrafluoroethylene (e-PTFE) plays a leading role owing to its mechanical properties as explained in the first part of this review. However, this material is poorly cell adhesive, which is expected for its contact on the abdominal face, but should display specific tissue adhesion on its thoracic exposed faced. A side specific functionalization method is hence required. The deposition of a nanosized polydopamine film on PTFE is known to be possible but immersion of the e-PTFE membrane in an aerated dopamine solution leads to a functionalization not only on both faces of the membrane but also in its porous volume. The fact that polydopamine also forms at the water/air interface has allowed to transfer a polydopamine film on only one face of the e-PTFE membrane. The deposition method and applications of such Janus like membranes are reviewed in the second part of the review.
Collapse
Affiliation(s)
- Isabelle Talon
- Service de Chirurgie Pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
| | - Anne Schneider
- Service de Chirurgie Pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Joseph Hemmerle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
| |
Collapse
|
8
|
Terazawa T, Furukoshi M, Nakayama Y. One-year follow-up study of iBTA-induced allogenic biosheet for repair of abdominal wall defects in a beagle model: a pilot study. Hernia 2018; 23:149-155. [PMID: 30506241 DOI: 10.1007/s10029-018-1866-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We evaluated the usefulness of biosheet, an in-body tissue-engineered collagenous membrane, as a novel repair material for abdominal wall defects in a beagle model. METHODS Biosheets were prepared by embedding molds into subcutaneous pouches in two beagle dogs for 2 months, with subsequent storage in 70% ethanol. The obtained biosheets (thickness 0.5 mm, size 25 cm2) were implanted to replace same-size defects in the abdominal wall of two beagles in an allogenic manner. RESULTS The biosheets were not stressed during suturing and did not split; moreover, patch implantation into the defective wound was easy. No complications such as anastomotic leaks or infections occurred during implantation. One year post-implantation, the thickness of the biosheet implantation section increased to approximately 2.5 mm, corresponding to approximately 70% of the native abdominal wall. A section of the abdominal wall muscle elongated from the periphery of the newly formed collagen layer, and the peritoneum was entirely formed on the peritoneal cavity surface, resulting in partial regeneration of the three-layered abdominal wall. The mechanical strength of the newly formed wall was approximately fivefold higher than the native wall. The elasticity of the biosheet in the low-strain region decreased to approximately 10% post-implantation, similar to the native wall. CONCLUSIONS This pilot study demonstrated that biosheet maintained the abdominal wall without any complications for 1 year post-implantation, and partial regeneration was observed. Although this experiment was limited to two cases, the results indicated that biosheet may serve as a reliable abdominal wall restorative material.
Collapse
Affiliation(s)
- T Terazawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan.,Division of Cell Engineering, Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Biotube Co., Ltd, 2-13-11 Shinkawa, Chuo, Tokyo, 104-0033, Japan
| | - M Furukoshi
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan.,Division of Cell Engineering, Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Y Nakayama
- Biotube Co., Ltd, 2-13-11 Shinkawa, Chuo, Tokyo, 104-0033, Japan.
| |
Collapse
|