1
|
Huang Y, Miyamoto D, Hidaka M, Adachi T, Gu WL, Eguchi S. Regenerative medicine for the hepatobiliary system: A review. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:913-930. [PMID: 33314713 DOI: 10.1002/jhbp.882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Liver transplantation, the only proven treatment for end-stage liver disease and acute liver failure, is hampered by the scarcity of donors. Regenerative medicine provides an alternative therapeutic approach. Tremendous efforts dedicated to liver regenerative medicine include the delivery of transplantable cells, microtissues, and bioengineered whole livers via tissue engineering and the maintenance of partial liver function via extracorporeal support. This brief review summarizes the current status of regenerative medicine for the hepatobiliary system. For liver regenerative medicine, the focus is on strategies for expansion of transplantable hepatocytes, generation of hepatocyte-like cells, and therapeutic potential of engineered tissues in liver disease models. For biliary regenerative medicine, the discussion concentrates on the methods for generation of cholangiocyte-like cells and strategies in the treatment of biliary disease. Significant advances have been made in large-scale and long-term expansion of liver cells. The development of tissue engineering and stem cell induction technology holds great promise for the future treatment of hepatobiliary diseases. The application of regenerative medicine in liver still lacks extensive animal experiments. Therefore, a large number of preclinical studies are necessary to provide sufficient evidence for their therapeutic effectiveness. Much remains to be done for the treatment of hepatobiliary diseases with regenerative medicine.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wei-Li Gu
- Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
2
|
Kanetaka K, Eguchi S. Regenerative medicine for the upper gastrointestinal tract. Regen Ther 2020; 15:129-137. [PMID: 33426211 PMCID: PMC7770370 DOI: 10.1016/j.reth.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The main surgical strategy for gastrointestinal tract malignancy is en bloc resection, which consists of not only resection of the involved organs but also simultaneous resection of the surrounding or adjacent mesenteries that contain lymph vessels and nodes. After resection of the diseased organs, the defect of the gastrointestinal conduit is replaced with organs located downstream, such as the stomach and jejunum. However, esophageal and gastric reconstruction using these natural substitutes is associated with a diminished quality of life due to the loss of the reserve function, damage to the antireflux barrier, and dumping syndrome. Thus, replacement of the deficit after resection with the patient's own regenerated tissue to compensate for the lost function and tissue using regenerative medicine will be an ideal treatment. Many researchers have been trying to construct artificial organs through tissue engineering techniques; however, none have yet succeeded in growing a whole organ because of the complicated functions these organs perform, such as the processing and absorption of nutrients. While exciting results have been reported with regard to tissue engineering techniques concerning the upper gastrointestinal tract, such as the esophagus and stomach, most of these achievements have been observed in animal models, and few successful approaches in the clinical setting have been reported for the replacement of mucosal defects. We review the recent progress in regenerative medicine in relation to the upper gastrointestinal tract, such as the esophagus and stomach. We also focus on the functional capacity of regenerated tissue and its role as a culture system to recapitulate the mechanisms underlying infectious disease. With the emergence of technology such as the fabrication of decellularized constructs, organoids and cell sheet medicine, collaboration between gastrointestinal surgery and regenerative medicine is expected to help establish novel therapeutic modalities in the future.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Tissue Engineering and Regenerative Therapeutics in Gastrointestinal Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
3
|
Nakamura K, Saotome T, Shimada N, Matsuno K, Tabata Y. A Gelatin Hydrogel Nonwoven Fabric Facilitates Metabolic Activity of Multilayered Cell Sheets. Tissue Eng Part C Methods 2020; 25:344-352. [PMID: 31062648 DOI: 10.1089/ten.tec.2019.0061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT This study introduces the utility of gelatin hydrogel nonwoven fabrics (GHNFs) for cell sheet engineering. The GHNF had the mechanical property strong enough to hold by forceps even in the swollen condition. The cell sheet harvest and transfer processes were performed simpler and faster than those without using the GHNF. The GHNF facilitates the metabolic activity of three-layered cell sheets, and the cell migration from cell sheets into the GHNF was observed. The GHNF is a promising material used to support cell sheets during the process of assemble formulation and contributes to the improved biological functions of tissue-like cell constructs.
Collapse
Affiliation(s)
- Koichiro Nakamura
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiki Saotome
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoki Shimada
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Kumiko Matsuno
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- 2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Nakamura K, Nobutani K, Shimada N, Tabata Y. Gelatin Hydrogel-Fragmented Fibers Suppress Shrinkage of Cell Sheet. Tissue Eng Part C Methods 2020; 26:216-224. [DOI: 10.1089/ten.tec.2019.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Koichiro Nakamura
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiaki Nobutani
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Sakai Y, Koike M, Murai T, Hidaka M, Soyama A, Takatsuki M, Eguchi S. In vitro and in vivo fabrication of stable human hepatocyte tissue in combination with normal fibroblasts derived from donors of various ages. J Biosci Bioeng 2019; 128:766-772. [PMID: 31202728 DOI: 10.1016/j.jbiosc.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/11/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
In order to establish a minimally invasive and safe liver regenerative technology, a technique for fabricating liver tissue possessing a vascular network was developed by subcutaneously transplanting a cell sheet composed of primary human hepatocytes and normal fibroblasts. However, differences in fibroblast characteristics owing to donor age may threaten the stability of liver tissue regenerated via this technology. Herein we describe the influence of fibroblasts from multiple donors on the fabrication of engineered human hepatocyte tissues invitro and in vivo. Primary human hepatocytes were cultured with seven strains of fibroblasts derived from the skins of donors of various ages, ranging from a fetus (12 weeks) to the elderly (69 years). Engineered hepatocyte sheets were successfully harvested for all strains. At 2 weeks after the subcutaneous transplantation of the hepatocyte sheets into mice, the highest human albumin (hALB) serum concentration was noted in the mouse containing fibroblasts from a 12 year old (TIG-118). Since the platelet-derived growth factor subunit B (PDGFB) gene expression of TIG-118 cells was significantly higher than that in the other cells, PDGFB may be considered to play an important role in the initial subcutaneous engraftment of primary human hepatocytes. Even though hALB concentration exhibited a parabolic tendency with age, there was no statistically significant difference noted within 6-8 weeks after transplantation. The present study demonstrates that this technology can produce consistent and stable hepatocyte sheets that exhibit long-term survival and liver-specific functionality in vivo regardless of the fibroblast donor age.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Makiko Koike
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tomomi Murai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|