1
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00746-x. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Chaweewannakorn C, Aye KTN, Ferreira JN. Magnetic 3D bioprinting of skeletal muscle spheroid for a spheroid-based screening assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100190. [PMID: 39490743 DOI: 10.1016/j.slasd.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Over the past decade, there has been a rapid development in the use of magnetic three dimensional (3D) based cell culture systems. Concerning the skeletal muscle, 3D culture systems can provide biological insights for translational clinical research in the fields of muscle physiology and metabolism. These systems can enhance the cell culture environment by improving spatially-oriented cellular assemblies and morphological features closely mimicking the in vivo tissues/organs, since they promote strong interactions between cells and the extracellular matrix (ECM). However, the time-consuming and complex nature of 3D traditional culture techniques pose a challenge to the widespread adoption of 3D systems. Herein, a bench protocol is presented for creating an innovative, promptly assembled and user-friendly culture platform for the magnetic 3D bioprinting of skeletal muscle spheroids. Our protocol findings revealed consistent morphological outcomes and the functional development of skeletal muscle tissue, as evidenced by the expression of muscle-specific contractile proteins and myotubes and the responsiveness to stimulation with cholinergic neurotransmitters. This proof-of-concept protocol confirmed the future potential for further validation and application of spheroid-based assays in human skeletal muscle research.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Center of Excellence and Innovation for Oral Health & Health Longevity, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 10330; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 10330.
| | - Khin The Nu Aye
- Center of Excellence and Innovation for Oral Health & Health Longevity, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 10330
| | - Joao N Ferreira
- Center of Excellence and Innovation for Oral Health & Health Longevity, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 10330
| |
Collapse
|
4
|
Rahman MM, Wells G, Rantala JK, Helleday T, Muthana M, Danson SJ. In-vitro assays for immuno-oncology drug efficacy assessment and screening for personalized cancer therapy: scopes and challenges. Expert Rev Clin Immunol 2024; 20:821-838. [PMID: 38546609 DOI: 10.1080/1744666x.2024.2336583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized cancer treatment, but often fail to produce desirable therapeutic outcomes in all patients. Due to the inter-patient heterogeneity and complexity of the tumor microenvironment, personalized treatment approaches are gaining demand. Researchers have long been using a range of in-vitro assays including 2D models, organoid co-cultures, and cancer-on-a-chip platforms for cancer drug screening. A comparative analysis of these assays with their suitability, high-throughput capacity, and clinical translatability is required for optimal translational use. AREAS COVERED The review summarized in-vitro platforms with their comparative advantages and limitations including construction strategies, and translational potential for immuno-oncology drug efficacy assessment. We also discussed end-point analysis strategies so that researchers can contextualize their usefulness and optimally design experiments for personalized immunotherapy efficacy prediction. EXPERT OPINION Researchers developed several in-vitro platforms that can provide information on personalized immunotherapy efficacy from different angles. Image-based assays are undoubtedly more suitable to gather a wide range of information including cellular morphology and phenotypical behaviors but need significant improvement to overcome issues including background noise, sample preparation difficulty, and long duration of experiment. More studies and clinical trials are needed to resolve these issues and validate the assays before they can be used in real-life scenarios.
Collapse
Affiliation(s)
- Md Marufur Rahman
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Directorate General of Health Services, Dhaka, Bangladesh
| | - Greg Wells
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Juha K Rantala
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Misvik Biology Ltd, Turku, Finland
| | - Thomas Helleday
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Department of Oncology-Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Munitta Muthana
- Nanobug Oncology Sheffield, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Sarah J Danson
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Aye KTN, Ferreira JN, Chaweewannakorn C, Souza GR. Advances in the application of iron oxide nanoparticles (IONs and SPIONs) in three-dimensional cell culture systems. SLAS Technol 2024; 29:100132. [PMID: 38582355 DOI: 10.1016/j.slast.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments. The variety and modification of the physical and chemical properties of magnetic nanoparticles have profound impacts on cellular mechanisms, metabolic processes, and overall biological function. This review article focuses on the applications of magnetic nanoparticles, elucidating their advantages and potential pitfalls when integrated into 3D cell culture systems. This review aims to shed light on the transformative potential of magnetic nanoparticles in terms of tissue engineering and their capacity to improve the cultivation and manipulation of cells in 3D environments.
Collapse
Affiliation(s)
- Khin The Nu Aye
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Chaweewannakorn
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| |
Collapse
|
7
|
Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open 2024; 10:39. [PMID: 38816372 PMCID: PMC11139920 DOI: 10.1038/s41405-024-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Salivary gland (SG) hypofunction is a common clinical condition arising from radiotherapy to suppress head and neck cancers. The radiation often destroys the SG secretory acini, and glands are left with limited regenerative potential. Due to the complex architecture of SG acini and ducts, three-dimensional (3D) bioprinting platforms have emerged to spatially define these in vitro epithelial units and develop mini-organs or organoids for regeneration. Due to the limited body of evidence, this comprehensive review highlights the advantages and challenges of bioprinting platforms for SG regeneration. METHODS SG microtissue engineering strategies such as magnetic 3D bioassembly of cells and microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes have been proposed to replace the damaged acinar units, avoid the use of xenogeneic matrices (like Matrigel), and restore salivary flow. RESULTS Replacing the SG damaged organ is challenging due to its complex architecture, which combines a ductal network with acinar epithelial units to facilitate a unidirectional flow of saliva. Our research group was the first to develop 3D bioassembly SG epithelial functional organoids with innervation to respond to both cholinergic and adrenergic stimulation. More recently, microtissue engineering using coaxial 3D bioprinting of hydrogel microfibers and microtubes could also supported the formation of viable epithelial units. Both bioprinting approaches could overcome the need for Matrigel by facilitating the assembly of adult stem cells, such as human dental pulp stem cells, and primary SG cells into micro-sized 3D constructs able to produce their own matrix and self-organize into micro-modular tissue clusters with lumenized areas. Furthermore, extracellular vesicle (EV) therapies from organoid-derived secretome were also designed and validated ex vivo for SG regeneration after radiation damage. CONCLUSION Magnetic 3D bioassembly and microfluidic coaxial bioprinting platforms have the potential to create SG mini-organs for regenerative applications via organoid transplantation or organoid-derived EV therapies.
Collapse
Affiliation(s)
- Jutapak Klangprapan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Glauco R Souza
- Greiner Bio-one North America Inc., 4238 Capital Drive, Monroe, NC, 28110, USA
| | - João N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Pillai S, Munguia-Lopez JG, Tran SD. Bioengineered Salivary Gland Microtissues─A Review of 3D Cellular Models and their Applications. ACS APPLIED BIO MATERIALS 2024; 7:2620-2636. [PMID: 38591955 DOI: 10.1021/acsabm.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Jose G Munguia-Lopez
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
9
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
11
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
12
|
Mereness JA, Piraino L, Chen CY, Moyston T, Song Y, Shubin A, DeLouise LA, Ovitt CE, Benoit DSW. Slow hydrogel matrix degradation enhances salivary gland mimetic phenotype. Acta Biomater 2023; 166:187-200. [PMID: 37150277 PMCID: PMC10330445 DOI: 10.1016/j.actbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.
Collapse
Affiliation(s)
- Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, United States
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Chiao Yun Chen
- Department of Biomedical Engineering, University of Rochester, United States
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, United States
| | - Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, United States; Knight Campus Department of Bioengineering, Syracuse University, Syracuse, NY, United States
| | - Andrew Shubin
- Department of Biomedical Engineering, University of Rochester, United States; Department of General Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Catherine E Ovitt
- Department of Biomedical Genetics, University of Rochester, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Knight Campus Bioengineering Department, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
13
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
14
|
Phan TV, Oo Y, Ahmed K, Rodboon T, Rosa V, Yodmuang S, Ferreira JN. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS Technol 2023; 28:199-209. [PMID: 37019217 DOI: 10.1016/j.slast.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Hyposalivation and severe dry mouth syndrome are the most common complications in patients with head and neck cancer (HNC) after receiving radiation therapy. Conventional treatment for hyposalivation relies on the use of sialogogues such as pilocarpine; however, their efficacy is constrained by the limited number of remnant acinar cells after radiation. After radiotherapy, the salivary gland (SG) secretory parenchyma is largely destroyed, and due to the reduced stem cell niche, this gland has poor regenerative potential. To tackle this, researchers must be able to generate highly complex cellularized 3D constructs for clinical transplantation via technologies, including those that involve bioprinting of cells and biomaterials. A potential stem cell source with promising clinical outcomes to reserve dry mouth is adipose mesenchymal stem cells (AdMSC). MSC-like cells like human dental pulp stem cells (hDPSC) have been tested in novel magnetic bioprinting platforms using nanoparticles that can bind cell membranes by electrostatic interaction, as well as their paracrine signals arising from extracellular vesicles. Both magnetized cells and their secretome cues were found to increase epithelial and neuronal growth of in vitro and ex vivo irradiated SG models. Interestingly, these magnetic bioprinting platforms can be applied as a high-throughput drug screening system due to the consistency in structure and functions of their organoids. Recently, exogenous decellularized porcine ECM was added to this magnetic platform to stimulate an ideal environment for cell tethering, proliferation, and/or differentiation. The combination of these SG tissue biofabrication strategies will promptly allow for in vitro organoid formation and establishment of cellular senescent organoids for aging models, but challenges remain in terms of epithelial polarization and lumen formation for unidirectional fluid flow. Current magnetic bioprinting nanotechnologies can provide promising functional and aging features to in vitro craniofacial exocrine gland organoids, which can be utilized for novel drug discovery and/or clinical transplantation.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore; Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
16
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
17
|
Alqahtani S, Butcher MC, Ramage G, Dalby MJ, McLean W, Nile CJ. Acetylcholine Receptors in Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:47-59. [PMID: 36355611 DOI: 10.1089/scd.2022.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their regenerative potential. Even though the ability of MSCs to proliferate and differentiate has been studied extensively, there remains much to learn about the signaling mechanisms and pathways that control proliferation and influence the differentiation phenotype. In recent years, there has been growing evidence for the utility of non-neuronal cholinergic signaling systems and that acetylcholine (ACh) plays an important ubiquitous role in cell-to-cell communication. Indeed, cholinergic signaling is hypothesized to occur in stem cells and ACh synthesis, as well as in ACh receptor (AChR) expression, has been identified in several stem cell populations, including MSCs. Furthermore, AChRs have been found to influence MSC regenerative potential. In humans, there are two major classes of AChRs, muscarinic AChRs and nicotinic AChRs, with each class possessing several subtypes or subunits. In this review, the expression and function of AChRs in different types of MSC are summarized with the aim of highlighting how AChRs play a pivotal role in regulating MSC regenerative function.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Mark C Butcher
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - William McLean
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Christopher J Nile
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Shen C, Zhang ZJ, Li XX, Huang YP, Wang YX, Zhou H, Xiong L, Wen Y, Zou H, Liu ZT. Intersection of nanomaterials and organoids technology in biomedicine. Front Immunol 2023; 14:1172262. [PMID: 37187755 PMCID: PMC10175666 DOI: 10.3389/fimmu.2023.1172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Organoids are stem cell-derived, self-organizing, 3D structures. Compared to the conventional 2D cell culture method, 3D cultured organoids contain a variety of cell types that can form functional "micro-organs" and can be used to simulate the occurrence process and physiological pathological state of organ tissues more effectively. Nanomaterials (NMs) are becoming indispensable in the development of novel organoids. Understanding the application of nanomaterials in organoid construction can, therefore, provide researchers with ideas for the development of novel organoids. Here, we discuss the application status of NMs in various organoid culture systems and the research direction of NMs combined with organoids in the biomedical field.
Collapse
Affiliation(s)
- Chen Shen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-xue Li
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-peng Huang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-xiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| | - Zhong-tao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| |
Collapse
|
19
|
Ahmed K, Rodboon T, Oo Y, Phan T, Chaisuparat R, Yodmuang S, Rosa V, Ferreira JN. Biofabrication, biochemical profiling, and in vitro applications of salivary gland decellularized matrices via magnetic bioassembly platforms. Cell Tissue Res 2022; 392:499-516. [PMID: 36576591 DOI: 10.1007/s00441-022-03728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Trending three-dimensional tissue engineering platforms developed via biofabrication and bioprinting of exocrine glands are on the rise due to a commitment to organogenesis principles. Nevertheless, a proper extracellular matrix (ECM) microarchitecture to harbor primary cells is yet to be established towards human salivary gland (SG) organogenesis. By using porcine submandibular gland (SMG) biopsies as a proof-of-concept to mimic the human SG, a new decellularized ECM bioassembly platform was developed herein with varying perfusions of sodium dodecyl sulfate (SDS) to limit denaturing events and ensure proper preservation of the native ECM biochemical niche. Porcine SMG biopsies were perfused with 0.01%, 0.1%, and 1% SDS and bio-assembled magnetically in porous polycarbonate track-etched (PCTE) membrane. Double-stranded DNA (dsDNA), cell removal efficiency, and ECM biochemical contents were analyzed. SDS at 0.1% and 1% efficiently removed dsDNA (< 50 ng/mg) and preserved key matrix components (sulfated glycosaminoglycans, collagens, elastin) and the microarchitecture of native SMG ECM. Bio-assembled SMG decellularized ECM (dECM) perfused with 0.1-1% SDS enhanced cell viability, proliferation, expansion confluency rates, and tethering of primary SMG cells during 7 culture days. Perfusion with 1% SDS promoted greater cell proliferation rates while 0.1% SDS supported higher acinar epithelial expression when compared to basement membrane extract and other substrates. Thus, this dECM magnetic bioassembly strategy was effective for decellularization while retaining the original ECM biochemical niche and promoting SMG cell proliferation, expansion, differentiation, and tethering. Altogether, these outcomes pave the way towards the recellularization of this novel SMG dECM in future in vitro and in vivo applications.
Collapse
Affiliation(s)
- Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Toan Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Chansaenroj A, Adine C, Charoenlappanit S, Roytrakul S, Sariya L, Osathanon T, Rungarunlert S, Urkasemsin G, Chaisuparat R, Yodmuang S, Souza GR, Ferreira JN. Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair. Bioact Mater 2022; 18:151-163. [PMID: 35387159 PMCID: PMC8961305 DOI: 10.1016/j.bioactmat.2022.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
Salivary glands (SG) are exocrine organs with secretory units commonly injured by radiotherapy. Bio-engineered organoids and extracellular vesicles (EV) are currently under investigation as potential strategies for SG repair. Herein, three-dimensional (3D) cultures of SG functional organoids (SGo) and human dental pulp stem cells (hDPSC) were generated by magnetic 3D bioassembly (M3DB) platforms. Fibroblast growth factor 10 (FGF10) was used to enrich the SGo in secretory epithelial units. After 11 culture days via M3DB, SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation. To consistently develop 3D hDPSC in vitro, 3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation. EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures. EV were characterized by nanoparticle tracking analysis, electron microscopy and immunoblotting. EV were in the exosome range for hDPSC (diameter: 88.03 ± 15.60 nm) and for SGo (123.15 ± 63.06 nm). Upon ex vivo administration, exosomes derived from SGo significantly stimulated epithelial growth (up to 60%), mitosis, epithelial progenitors and neuronal growth in injured SG; however, such biological effects were less distinctive with the ones derived from hDPSC. Next, these exosome biological effects were investigated by proteomic arrays. Mass spectrometry profiling of SGo exosomes predicted that cellular growth, development and signaling was due to known and undocumented molecular targets downstream of FGF10. Semaphorins were identified as one of the novel targets requiring further investigations. Thus, M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Christabella Adine
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 119077, Singapore, Singapore
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ganokon Urkasemsin
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Glauco R. Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
- Nano3D Biosciences Inc., Houston, TX, 77030, USA
- Greiner Bio-One North America Inc, Monroe, NC, 28110, USA
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|
21
|
Gonçalves AI, Gomes ME. Outlook in Tissue Engineered Magnetic Systems and Biomagnetic Control. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
High-efficiency 3D cell spheroid formation via the inertial focusing effect in rotating droplets. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Rodboon T, Souza GR, Mutirangura A, Ferreira JN. Magnetic bioassembly platforms for establishing craniofacial exocrine gland organoids as aging in vitro models. PLoS One 2022; 17:e0272644. [PMID: 35930565 PMCID: PMC9355193 DOI: 10.1371/journal.pone.0272644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
A multitude of aging-related factors and systemic conditions can cause lacrimal gland (LG) or salivary gland (SG) hypofunction leading to degenerative dry eye disease (DED) or dry mouth syndrome, respectively. Currently, there are no effective regenerative therapies that can fully reverse such gland hypofunction due to the lack of reproducible in vitro aging models or organoids required to develop novel treatments for multi-omic profiling. Previously, our research group successful developed three-dimensional (3D) bioassembly nanotechnologies towards the generation of functional exocrine gland organoids via magnetic 3D bioprinting platforms (M3DB). To meet the needs of our aging Asian societies, a next step was taken to design consistent M3DB protocols to engineer LG and SG organoid models with aging molecular and pathological features. Herein, a feasible step-by-step protocol was provided for producing both LG and SG organoids using M3DB platforms. Such protocol provided reproducible outcomes with final organoid products resembling LG or SG native parenchymal epithelial tissues. Both acinar and ductal epithelial compartments were prominent (21 ± 4.32% versus 42 ± 6.72%, respectively), and could be clearly identified in these organoids. Meanwhile, these can be further developed into aging signature models by inducing cellular senescence via chemical mutagenesis. The generation of senescence-like organoids will be our ultimate milestone aiming towards high throughput applications for drug screening and discovery, and for gene therapy investigations to reverse aging.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, United States of America
- Nano3D Biosciences Inc., Houston, TX, United States of America
- Greiner Bio-One North America Inc., Monroe, NC, United States of America
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
26
|
Caleffi JT, Aal MCE, Gallindo HDOM, Caxali GH, Crulhas BP, Ribeiro AO, Souza GR, Delella FK. Magnetic 3D cell culture: State of the art and current advances. Life Sci 2021; 286:120028. [PMID: 34627776 DOI: 10.1016/j.lfs.2021.120028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Cell culture is an important tool for the understanding of cell biology and behavior. In vitro cultivation has been increasingly indispensable for biomedical, pharmaceutical, and biotechnology research. Nevertheless, with the demand for in vitro experimentation strategies more representative of in vivo conditions, tridimensional (3D) cell culture models have been successfully developed. Although these 3D models are efficient and address critical questions from different research areas, there are considerable differences between the existing techniques regarding both elaboration and cost. In light of this, this review describes the construction of 3D spheroids using magnetization while bringing the most recent updates in this field. Magnetic 3D cell culture consists of magnetizing cells using an assembly of gold and iron oxide nanoparticles cross-linked with poly-l-lysine nanoparticles. Then, 3D culture formation in special plates with the assistance of magnets for levitation or bioprinting. Here, we discuss magnetic 3D cell culture advancements, including tumor microenvironment, tissue reconstruction, blood vessel engineering, toxicology, cytotoxicity, and 3D culture of cardiomyocytes, bronchial and pancreatic cells.
Collapse
Affiliation(s)
- Juliana Trindade Caleffi
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Mirian Carolini Esgoti Aal
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Gabriel Henrique Caxali
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Amanda Oliveira Ribeiro
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Flávia Karina Delella
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil.
| |
Collapse
|
27
|
McGue CM, Mañón VA, Viet CT. Advances in Tissue Engineering and Implications for Oral and Maxillofacial Reconstruction. JOURNAL OF THE CALIFORNIA DENTAL ASSOCIATION 2021; 49:685-694. [PMID: 34887651 PMCID: PMC8653764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Reconstructive surgery in the oral and maxillofacial region poses many challenges due to the complexity of the facial skeleton and the presence of composite defects involving soft tissue, bone and nerve defects. METHODS Current methods of reconstruction include autologous grafting techniques with local or regional rotational flaps or microvascular free flaps, allografts, xenografts and prosthetic devices. RESULTS Tissue engineering therapies utilizing stem cells provide promise for enhancing the current reconstructive options. CONCLUSIONS This article is a review on tissue engineering strategies applicable to specialists who treat oral and maxillofacial defects. PRACTICAL IMPLICATIONS We review advancements in hard tissue regeneration for dental rehabilitation, soft tissue engineering, nerve regeneration and innovative strategies for reconstruction of major defects.
Collapse
Affiliation(s)
- Caitlyn M McGue
- Department of oral and maxillofacial surgery at the Loma Linda University School of Dentistry
| | - Victoria A Mañón
- Department of oral and maxillofacial surgery at the University of Texas Health Science Center at Houston School of Dentistry
| | - Chi T Viet
- Department of oral and maxillofacial surgery at the Loma Linda University School of Dentistry
| |
Collapse
|
28
|
Abstract
Organoids have complex three-dimensional structures that exhibit functionalities and feature architectures similar to those of in vivo organs and are developed from adult stem cells, embryonic stem cells, and pluripotent stem cells through a self-organization process. Organoids derived from adult epithelial stem cells are the most mature and extensive. In recent years, using organoid culture techniques, researchers have established various adult human tissue-derived epithelial organoids, including intestinal, colon, lung, liver, stomach, breast, and oral mucosal organoids, all of which exhibit strong research and application prospects. Studies have shown that epithelial organoids are mainly applied in drug discovery, personalized drug response testing, disease mechanism research, and regenerative medicine. In this review, we mainly discuss current organoid culture systems and potential applications of this technique with human epithelial tissue.
Collapse
Affiliation(s)
- Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
29
|
Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int 2021; 2021:9477332. [PMID: 34671401 PMCID: PMC8523294 DOI: 10.1155/2021/9477332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.
Collapse
|
30
|
Organoid Models for Salivary Gland Biology and Regenerative Medicine. Stem Cells Int 2021; 2021:9922597. [PMID: 34497651 PMCID: PMC8421180 DOI: 10.1155/2021/9922597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The salivary gland is composed of an elegant epithelial network that secrets saliva and maintains oral homeostasis. While cell lines and animal models furthered our understanding of salivary gland biology, they cannot replicate key aspects of the human salivary gland tissue, particularly the complex architecture and microenvironmental features that dictate salivary gland function. Organoid cultures provide an alternative system to recapitulate salivary gland tissue in vitro, and salivary gland organoids have been generated from pluripotent stem cells and adult stem/progenitor cells. In this review, we describe salivary gland organoids, the advances and limitations, and the promising potential for regenerative medicine.
Collapse
|
31
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
32
|
Libring S, Enríquez Á, Lee H, Solorio L. In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers (Basel) 2021; 13:4440. [PMID: 34503250 PMCID: PMC8430481 DOI: 10.3390/cancers13174440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.
Collapse
Affiliation(s)
- Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
33
|
Scaffold-free 3D cell culture of primary skin fibroblasts induces profound changes of the matrisome. Matrix Biol Plus 2021; 11:100066. [PMID: 34435183 PMCID: PMC8377039 DOI: 10.1016/j.mbplus.2021.100066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The human skin has a highly developed extracellular matrix (ECM) that is vital for proper skin functioning, its 3D architecture playing a pivotal role in support and guidance of resident and invading cells. To establish relevant in vitro models mimicking the complex design observed in vivo, scaffold-based and scaffold-free 3D cell culture systems have been developed. Here we show that scaffold-free systems are well suited for the analysis of ECM protein regulation. Using quantitative mass spectrometry-based proteomics in combination with magnetic 3D bioprinting we characterize changes in the proteome of skin fibroblasts and squamous cell carcinoma cells. Transferring cells from 2D to 3D without any additional scaffold induces a profound upregulation of matrisome proteins indicating the generation of a complex, tissue-like ECM.
Collapse
|
34
|
The role of physical cues in the development of stem cell-derived organoids. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:105-117. [PMID: 34120215 PMCID: PMC8964551 DOI: 10.1007/s00249-021-01551-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Organoids are a novel three-dimensional stem cells’ culture system that allows the in vitro recapitulation of organs/tissues structure complexity. Pluripotent and adult stem cells are included in a peculiar microenvironment consisting of a supporting structure (an extracellular matrix (ECM)-like component) and a cocktail of soluble bioactive molecules that, together, mimic the stem cell niche organization. It is noteworthy that the balance of all microenvironmental components is the most critical step for obtaining the successful development of an accurate organoid instead of an organoid with heterogeneous morphology, size, and cellular composition. Within this system, mechanical forces exerted on stem cells are collected by cellular proteins and transduced via mechanosensing—mechanotransduction mechanisms in biochemical signaling that dictate the stem cell specification process toward the formation of organoids. This review discusses the role of the environment in organoids formation and focuses on the effect of physical components on the developmental system. The work starts with a biological description of organoids and continues with the relevance of physical forces in the organoid environment formation. In this context, the methods used to generate organoids and some relevant published reports are discussed as examples showing the key role of mechanosensing–mechanotransduction mechanisms in stem cell-derived organoids.
Collapse
|
35
|
Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW. Three-dimensional Spheroid Culture Enhances Multipotent Differentiation and Stemness Capacities of Human Dental Pulp-derived Mesenchymal Stem Cells by Modulating MAPK and NF-kB Signaling Pathways. Stem Cell Rev Rep 2021; 17:1810-1826. [PMID: 33893620 DOI: 10.1007/s12015-021-10172-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Three-dimensional (3D) culture of mesenchymal stem cells has become an important research and development topic. However, comprehensive analysis of human dental pulp-derived mesenchymal stem cells (DPSCs) in 3D-spheroid culture remains unexplored. Thus, we evaluated the cellular characteristics, multipotent differentiation, gene expression, and related-signal transduction pathways of DPSCs in 3D-spheroid culture via magnetic levitation (3DM), compared with 2D-monolayer (2D) and 3D-aggregate (3D) cultures. METHODS The gross morphology and cellular ultrastructure were observed in the 2D, 3D, and 3DM experimental groups using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface markers and trilineage differentiation were evaluated using flow cytometry and staining analysis. Quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining (IF) were performed to investigate the expression of differentiation and stemness markers. Signaling transduction pathways were evaluated using western blot analysis. RESULTS The morphology of cell aggregates and spheroids was largely influenced by the types of cell culture plates and initial cell seeding density. SEM and TEM experiments confirmed that the solid and firm structure of spheroids was quickly formed in the 3DM-medium without damaging cells. In addition, these three groups all expressed multilineage differentiation capabilities and surface marker expression. The trilineage differentiation capacities of the 3DM-group were significantly superior to the 2D and 3D-groups. The osteogenesis, angiogenesis, adipogenesis, and stemness-related genes were significantly enhanced in the 3D and 3DM-groups. The IF analysis showed that the extracellular matrix expression, osteogenesis, and angiogenesis proteins of the 3DM-group were significantly higher than those in the 2D and 3D-groups. Finally, 3DM-culture significantly activated the MAPK and NF-kB signaling transduction pathways and ameliorated the apoptosis effects of 3D-culture. CONCLUSIONS This study confirmed that 3DM-spheroids efficiently enhanced the therapeutic efficiency of DPSCs.
Collapse
Affiliation(s)
- Ya-Hui Chan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yi Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan
| | - Pi-Ju Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan. .,Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Chansaenroj A, Yodmuang S, Ferreira JN. Trends in Salivary Gland Tissue Engineering: From Stem Cells to Secretome and Organoid Bioprinting. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:155-165. [DOI: 10.1089/ten.teb.2020.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajjima Chansaenroj
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - João N. Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Tissue Engineering of Oral Mucosa and Salivary Gland: Disease Modeling and Clinical Applications. MICROMACHINES 2020; 11:mi11121066. [PMID: 33266093 PMCID: PMC7761376 DOI: 10.3390/mi11121066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Oral mucosa and salivary gland are composed of complex and dynamic networks of extracellular matrix, multiple cell types, vasculature, and various biochemical agents. Two-dimensional (2D) cell culture is commonly used in testing new drugs and experimental therapies. However, 2D cell culture cannot fully replicate the architecture, physiological, and pathological microenvironment of living human oral mucosa and salivary glands. Recent microengineering techniques offer state of the science cell culture models that can recapitulate human organ structures and functions. This narrative review describes emerging in vitro models of oral and salivary gland tissue such as 3D cell culture models, spheroid and organoid models, tissue-on-a-chip, and functional decellularized scaffolds. Clinical applications of these models are also discussed in this review.
Collapse
|
38
|
Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl 2020; 36:128-139. [PMID: 33019853 DOI: 10.1177/0885328220963920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Over the past ten years, regenerative medicine has focused on the regeneration and the reconstruction of damaged, diseased, or lost tissues and organs. Skin, being the largest organ in the human body, had attained a good attraction in this field. Delayed wound healing is one of the most challenging clinical medicine complications. This study aimed to evaluate the collagen chitosan scaffold's effect alone, or enriched with either bone marrow-derived mesenchymal stem cells (BM-MSCs) or their secreted extracellular vesicles (EVs) on the duration and quality of skin wound healing. METHODS A full-thickness skin wound was induced on the back of 32 adult male Sprague-Dawley rats. The wounds were either covered with collagen chitosan scaffolds alone, scaffolds enriched with stem cells, or extracellular vesicles. Unprotected wounds were used as control. Healing duration, collagen deposition and alignment, CD 68+ macrophage count, and functional tensile strength of healed skin were assessed (α = 0.05, n = 8). RESULTS The rate of skin healing was significantly accelerated in all treated groups compared to the control. Immuno-histochemical assessment of CD68+ macrophages showed enhanced macrophages count, in addition to higher collagen deposition and better collagen alignment in EVs and BM-MSCs treated groups compared to the control group. Higher tensile strength values reflected the better collagen deposition and alignment for these groups. EVs showed higher amounts of collagen deposition and better alignment compared to MSCs treated group. CONCLUSION The collagen chitosan scaffolds enriched with MSCs or their EVs improved wound healing and improved the quantity and remodeling of collagen with a better assignment to EVs.
Collapse
Affiliation(s)
- Salma Abolgheit
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | | | - Enas Omar
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Abdel Fattah AR, Ranga A. Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Front Bioeng Biotechnol 2020; 8:240. [PMID: 32363177 PMCID: PMC7180186 DOI: 10.3389/fbioe.2020.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Organoids are 3D multicellular constructs that rely on self-organized cell differentiation, patterning and morphogenesis to recapitulate key features of the form and function of tissues and organs of interest. Dynamic changes in these systems are orchestrated by biochemical and mechanical microenvironments, which can be engineered and manipulated to probe their role in developmental and disease mechanisms. In particular, the in vitro investigation of mechanical cues has been the focus of recent research, where mechanical manipulations imparting local as well as large-scale mechanical stresses aim to mimic in vivo tissue deformations which occur through proliferation, folding, invagination, and elongation. However, current in vitro approaches largely impose homogeneous mechanical changes via a host matrix and lack the required positional and directional specificity to mimic the diversity of in vivo scenarios. Thus, while organoids exhibit limited aspects of in vivo morphogenetic events, how local forces are coordinated to enable large-scale changes in tissue architecture remains a difficult question to address using current techniques. Nanoparticles, through their efficient internalization by cells and dispersion through extracellular matrices, have the ability to provide local or global, as well as passive or active modulation of mechanical stresses on organoids and tissues. In this review, we explore how nanoparticles can be used to manipulate matrix and tissue mechanics, and highlight their potential as tools for fate regulation through mechanotransduction in multicellular model systems.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
41
|
Strategies for Developing Functional Secretory Epithelia from Porcine Salivary Gland Explant Outgrowth Culture Models. Biomolecules 2019; 9:biom9110657. [PMID: 31717706 DOI: 10.3390/biom9110657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Research efforts have been made to develop human salivary gland (SG) secretory epithelia for transplantation in patients with SG hypofunction and dry mouth (xerostomia). However, the limited availability of human biopsies hinders the generation of sufficient cell numbers for epithelia formation and regeneration. Porcine SG have several similarities to their human counterparts, hence could replace human cells in SG modelling studies in vitro. Our study aims to establish porcine SG explant outgrowth models to generate functional secretory epithelia for regeneration purposes to rescue hyposalivation. Cells were isolated and expanded from porcine submandibular and parotid gland explants. Flow cytometry, immunocytochemistry, and gene arrays were performed to assess proliferation, standard mesenchymal stem cell, and putative SG epithelial stem/progenitor cell markers. Epithelial differentiation was induced and different SG-specific markers investigated. Functional assays upon neurostimulation determined α-amylase activity, trans-epithelial electrical resistance, and calcium influx. Primary cells exhibited SG epithelial progenitors and proliferation markers. After differentiation, SG markers were abundantly expressed resembling epithelial lineages (E-cadherin, Krt5, Krt14), and myoepithelial (α-smooth muscle actin) and neuronal (β3-tubulin, Chrm3) compartments. Differentiated cells from submandibular gland explant models displayed significantly greater proliferation, number of epithelial progenitors, amylase activity, and epithelial barrier function when compared to parotid gland models. Intracellular calcium was mobilized upon cholinergic and adrenergic neurostimulation. In summary, this study highlights new strategies to develop secretory epithelia from porcine SG explants, suitable for future proof-of-concept SG regeneration studies, as well as for testing novel muscarinic agonists and other biomolecules for dry mouth.
Collapse
|