1
|
Wang Z, Han L, Zhou Y, Cai J, Sun S, Ma J, Wang W, Li X, Ma L. The combination of a 3D-Printed porous Ti-6Al-4V alloy scaffold and stem cell sheet technology for the construction of biomimetic engineered bone at an ectopic site. Mater Today Bio 2022; 16:100433. [PMID: 36157052 PMCID: PMC9493059 DOI: 10.1016/j.mtbio.2022.100433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cell sheet technology has been widely used in bone tissue engineering and regenerative medicine. However, controlling the shape and volume of large pieces of engineered bone tissue remains impossible without additional suitable scaffolds. Three-dimensional (3D) printed titanium (Ti) alloy scaffolds are mostly used as implant materials for repairing bone defects, but the unsatisfactory bioactivities of traditional Ti-based scaffolds severely limit their clinical applications. Herein, we hypothesize that the combination of bone marrow mesenchymal stem cell (BMSC) sheet technology and 3D porous Ti–6Al–4V (PT) alloy scaffolds could be used to fabricate biomimetic engineered bone. First, various concentrations of BMSCs were directly cocultured with PT scaffolds to obtain complexes of osteoblastic cell sheets and scaffolds. Then, as an experimental control, an osteoblastic BMSC sheet was prepared by continuous culturing under osteogenic conditions for 2 weeks without passaging and used to wrap the scaffolds. The BMSC sheet was composed of several layers of extracellular matrix (ECM) and a mass of BMSCs. The BMSCs exhibited excellent adherent, proliferative and osteogenic potential when cocultured with PT scaffolds, which may be attributed to the ability of the 3D microstructure of scaffolds to facilitate the biological behaviors of cells, as confirmed by the in vitro results. Moreover, the presence of BMSCs and ECM increased the angiogenic potential of PT scaffolds by the secretion of VEGF. Micro-CT and histological analysis confirmed the in vivo formation of biomimetic engineered bone when the complex of cocultured BMSCs and PT scaffolds and the scaffolds wrapped by prepared BMSC sheets were implanted subcutaneously into nude mice. Therefore, the combination of BMSC sheet technology and 3D-printed PT scaffolds could be used to construct customized biomimetic engineered bone, offering a novel and promising strategy for the precise repair of bone defects.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Ye Zhou
- Laboratory of Basic Medicine, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Jiacheng Cai
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Shuohui Sun
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Junli Ma
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Weijian Wang
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, 510010, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
2
|
Coyac BR, Wolf BJ, Bahat DJ, Arioka M, Brunski JB, Helms JA. A WNT protein therapeutic accelerates consolidation of a bone graft substitute in a pre-clinical sinus augmentation model. J Clin Periodontol 2022; 49:782-798. [PMID: 35713219 DOI: 10.1111/jcpe.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
AIM Autologous bone grafts consolidate faster than bone graft substitutes (BGSs) but resorb over time, which compromises implant support. We hypothesized that differences in consolidation rates affected the mechanical properties of grafts and implant stability, and tested whether a pro-osteogenic protein, liposomal WNT3A (L-WNT3A), could accelerate graft consolidation. MATERIALS AND METHODS A transgenic mouse model of sinus augmentation with immunohistochemistry, enzymatic assays, and histology were used to quantitatively evaluate the osteogenic properties of autografts and BGSs. Composite and finite element modelling compared changes in the mechanical properties of grafts during healing until consolidation, and secondary implant stability following remodelling activities. BGSs were combined with L-WNT3A and tested for its osteogenic potential. RESULTS Compared with autografts, BGSs were bioinert and lacked osteoprogenitor cells. While in autografted sinuses, new bone arose evenly from all living autograft particles, new bone around BGSs solely initiated at the sinus floor, from the internal maxillary periosteum. WNT treatment of BGSs resulted in significantly higher expression levels of pro-osteogenic proteins (Osterix, Collagen I, alkaline phosphatase) and lower levels of bone-resorbing activity (tartrate-resistant acid phosphatase activity); together, these features culminated in faster new bone formation, comparable to that of an autograft. CONCLUSIONS WNT-treated BGSs supported faster consolidation, and because BGSs typically resist resorption, their use may be superior to autografts for sinus augmentation.
Collapse
Affiliation(s)
- Benjamin R Coyac
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA.,Department of Periodontology and Implant Dentistry, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Benjamin J Wolf
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Daniel J Bahat
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
3
|
Bahat O, Yin X, Holst S, Zabalegui I, Berroeta E, Pérez J, Wöhrle P, Sörgel N, Brunski J, Helms JA. An Osteotomy Tool That Preserves Bone Viability: Evaluation in Preclinical and Clinical Settings. J Clin Med 2022; 11:jcm11092536. [PMID: 35566662 PMCID: PMC9103213 DOI: 10.3390/jcm11092536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
The main objectives of this work were to assess the efficiency, ease-of-use, and general performance of a novel osseoshaping tool based on first-user clinical experiences and to compare these observations with preclinical data generated in rodents using a miniaturized version of the instrument. All patients selected for the surgery presented challenging clinical conditions in terms of the quality and/or quantity of the available bone. The presented data were collected during the implant placement of 15 implants in 7 patients, and included implant recipient site (bone quality and quantity) and ridge evaluation, intra-operative handling of the novel instrument, and the evaluation of subsequent implant insertion. The instrument was easy to handle and was applied without any complications during the surgical procedure. Its use obviated the need for multiple drills and enabled adequate insertion torque in all cases. This biologically driven innovation in implant site preparation shows improvements in preserving vital anatomical and cellular structures as well as simplifying the surgical protocol with excellent ease-of-use and handling properties.
Collapse
Affiliation(s)
- Oded Bahat
- Private Practice, Beverly Hills, CA 90210, USA
- Correspondence:
| | - Xing Yin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA; (X.Y.); (J.B.); (J.A.H.)
| | - Stefan Holst
- Nobel Biocare Services AG, 8058 Zurich, Switzerland;
| | | | | | | | | | | | - John Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA; (X.Y.); (J.B.); (J.A.H.)
| | - Jill A. Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA; (X.Y.); (J.B.); (J.A.H.)
| |
Collapse
|
4
|
Coyac BR, Wu M, Bahat DJ, Wolf BJ, Helms JA. Biology of sinus floor augmentation with an autograft versus a bone graft substitute in a preclinical in vivo experimental model. Clin Oral Implants Res 2021; 32:916-927. [PMID: 34031931 DOI: 10.1111/clr.13781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Compared to autografts, bone graft substitutes are slower to consolidate. If we understood why, this might open strategies to accelerate new bone formation and thus shorten the time to implant placement. In this study, we aimed at comparing autologous bone graft with a bovine bone graft substitute in a preclinical sinus lift model. MATERIALS AND METHODS The mouse posterior paranasal sinus served as a recipient site for grafting. Autograft from the oral cavity was compared against bone graft substitute using molecular, cellular, and histological analyses conducted on post-grafting days (PSD) 0, 9, 18, and 120. RESULTS Either autografts or bone graft substitutes were positioned on the sinus floor and remained in situ throughout the study. At the time of grafting and until day 9, bone graft substitutes were devoid of cells and alkaline phosphatase (ALP) activity while autografts were comprised of viable cells and showed strong ALP (mineralization) activity. Consequently, new bone formed faster in autografts compared to bone graft substitutes (140.21 ± 41.21 µm vs. 41.70 ± 10.09 µm, respectively, PSD9, p = .0143). By PSD18, osteogenesis was evident in autografted and xenografted sites. Osteoclasts identified by tartrate resistant acid phosphatase attached to, but did not resorb the bone graft substitute matrix. Autograft matrix, however, underwent extensive resorption. Transgenic mice revealed that Wnt-responsive osteoprogenitor cells originated primarily from the internal periosteum of the maxillary bone, and not from the Schneiderian membrane. CONCLUSION Autografts produce new bone sooner, but bovine bone graft substitutes eventually consolidate and then resist resorption. Enhancing osteoprogenitor cell recruitment to a bone graft substitute constitutes a viable strategy for accelerating bone formation in a sinus lift procedure.
Collapse
Affiliation(s)
- Benjamin R Coyac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Meagan Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Daniel J Bahat
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Benjamin J Wolf
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
5
|
Li Z, Yuan X, Arioka M, Bahat D, Sun Q, Chen J, Helms JA. Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants. Calcif Tissue Int 2021; 108:240-251. [PMID: 32990765 DOI: 10.1007/s00223-020-00757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Abstract
Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2CreCreERT2/+;R26mTmG/+ transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daniel Bahat
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qiang Sun
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jinlong Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Coyac BR, Salvi G, Leahy B, Li Z, Salmon B, Hoffmann W, Helms JA. A novel system exploits bone debris for implant osseointegration. J Periodontol 2020; 92:716-726. [PMID: 32829495 DOI: 10.1002/jper.20-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bone debris generated during site preparation is generally evacuated with irrigation; here, we evaluated whether retention of this autologous material improved the rate of peri-implant bone formation. METHODS In 25 rats, a miniature implant system composed of an osseo-shaping tool and a tri-oval-shaped implant was compared against a conventional drill and round implant system. A split-mouth design was used, and fresh extraction sockets served as implant sites. Histology/histomorphometry, immunohistochemistry, and microcomputed tomography (μCT) imaging were performed immediately after implant placement, and on post-surgery days 3, 7, 14, and 28. RESULTS Compared with a conventional drill design, the osseo-shaping tool produced a textured osteotomy surface and viable bone debris that was retained in the peri-implant environment. Proliferating osteoprogenitor cells, identified by PCNA and Runx2 expression, contributed to faster peri-implant bone formation. Although all implants osseointegrated, sites prepared with the osseo-shaping tool showed evidence of new peri-implant bone sooner than controls. CONCLUSION Bone debris produced by an osseo-shaping tool directly contributed to faster peri-implant bone formation and implant osseointegration.
Collapse
Affiliation(s)
- Benjamin R Coyac
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Giuseppe Salvi
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Brian Leahy
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Zhijun Li
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA.,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Benjamin Salmon
- Dental Medicine Department, Bretonneau Hospital, Montrouge, France, University of Paris, Paris, France
| | | | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|