Zor F, Kapaj R, Kulahci Y, Karslioglu Y, Gorantla VS. Composite tissue xenopreservation: Preliminary results of staged VCA in rat to mouse model.
Microsurgery 2023;
43:823-830. [PMID:
37354047 DOI:
10.1002/micr.31079]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND
The time between procurement and transplantation of composite tissues, especially regarding the limited donor pool, is a challenge effecting the outcomes of the transplantation. Current preservation techniques mainly include either cold preservation with a solution or machine perfusion using blood or certain oxygen-carrying solutions. However, none enables preservation beyond 24 h. Increasing this time to several days will provide better usage of the donor pool, safer transplantation of VCA with significant muscle content, and gives time to stabilize a patient before long surgical procedures. Herein, we described a novel strategy of xenopreservation (preservation via xenotransplantation) to preserve composite tissues for 7 days, followed by staged transplantation.
MATERIALS AND METHODS
We used two concordant species, female Sprague Dawley rats (n = 10) and female CF-1 mice (n = 10) in this study. Four of pair of animals are used for anatomical study. The groin flap of the rat was used as a xenograft and xenotransplanted to the neck area of the carrier mouse. Cyclosporine (CsA) was administered used as immunosuppressant. After 7 days of preservation on the mouse neck, xenotransplanted groin flap (called xenopreserved flap) was re-harvested, skin and vessels samples were collected for histopathological evaluation, and the xenopreserved flap was transplanted to the donor rat's opposite groin area. Anastomoses were performed between the flap's pedicle and the femoral vessels. Clinical observation regarding inflammation and tissue perfusion of the xenopreserved flap was monitored daily. Fifteen days after the second surgical procedure, the rats were euthanized, and skin and vessel samples were collected. Histologic evaluation, including inflammatory cell numbers, was performed. Wilcoxon test was used to compare the changes in inflammation severity and p < .05 was set for statistical significance.
RESULTS
All xenopreserved groin flaps except one survived. Mean lymphocyte count before the second operation (at the end of the xenopreservation procedure) was 20,22 ± 0.44 and reduced to 13,14 ± 0.47 at the end of 15 days, and the difference was statistically significant (p < .05).
CONCLUSION
This proof-of-concept study with preliminary results showed that xenotransplantation might be a novel strategy for preservation of VCA for a certain period of time. However, additional translational studies are needed to modulate the tissue changes following xenopreservation.
Collapse