1
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
2
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
3
|
Zhang W, Wang D, Li H, Xu G, Zhang H, Xu C, Li J. Mesenchymal stem cells can improve discogenic pain in patients with intervertebral disc degeneration: a systematic review and meta-analysis. Front Bioeng Biotechnol 2023; 11:1155357. [PMID: 37397969 PMCID: PMC10313064 DOI: 10.3389/fbioe.2023.1155357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Background: The meta-analysis aimed to estimate the efficacy of mesenchymal stem cells on lumbar discogenic pain in patients with intervertebral disc degeneration. Methods: A comprehensive literature search was conducted in the PubMed, Web of Science, Embase and Cochrane Library databases with predetermined search strategy up to 18 September 2022. The clinical studies focusing on evaluating the efficacy and safety of mesenchymal stem cells in patients with intervertebral disc degeneration were identified. The primary outcomes were changes of pain score and Oswestry Disability Index. The Newcastle-Ottawa Scale for cohort studies was used for quality assessment. Review Manager was used to conduct the statistical analysis. Pooled risk ratios were calculated based on the random effect model. Heterogeneity, subgroup, and publication bias analyses were also performed. Results: There were 2,392 studies were identified in the initial search, and 9 eligible studies with 245 patients were eventually included in this review. The Visual Analogue Scale score was significantly lower in patients after receiving mesenchymal stem cells therapy (mean difference = 41.62; 95% confidence interval 24.32 to 58.93; Heterogeneity: I2 = 98%; p < 0.01). And the pooled mean difference of Oswestry Disability Index was 22.04 from baseline to final follow-up points (95% confidence interval 8.75 to 35.33; p = 0.001; Heterogeneity: I2 = 98%; p < 0.001). The pooled reoperation proportion was 0.074 (95% confidence interval 0.009 to 0.175; Heterogeneity: I2 = 72%; p < 0.01). There were no serious related adverse events associated with the therapy. Conclusion: The findings of this meta-analysis indicated that mesenchymal stem cells therapy may be effective in relieving pain and improving Oswestry Disability Index significantly in patients with lumbar discogenic pain. Mesenchymal stem cells therapy may also be associated with a lower risk of adverse events and reoperation rates.
Collapse
Affiliation(s)
- Wupeng Zhang
- School of Medicine, Nankai University, Tianjin, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hao Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
4
|
Wang F, Guo K, Nan L, Wang S, Lu J, Wang Q, Ba Z, Huang Y, Wu D. Kartogenin-loaded hydrogel promotes intervertebral disc repair via protecting MSCs against reactive oxygen species microenvironment by Nrf2/TXNIP/NLRP3 axis. Free Radic Biol Med 2023; 204:128-150. [PMID: 37149010 DOI: 10.1016/j.freeradbiomed.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) and the consequent low back pain present a major medical challenge. Stem cell-based tissue engineering is promising for the treatment of IDD. However, stem cell-based treatment is severely impaired by the increased generation of reactive oxygen species (ROS) in degenerative disc, which can lead to a high level of cell dysfunction and even death. In this study, a kartogenin (KGN)@PLGA-GelMA/PRP composite hydrogel was designed and used as a carrier of ADSCs-based therapies in disc repair. Injectable composite hydrogel act as a carrier for controlled release of KGN and deliver ADSCs to the degenerative disc. The released KGN can stimulate the differentiation of ADSCs into a nucleus pulposus (NP) -like phenotype and boost antioxidant capacity of ADSCs via activating Nrf2/TXNIP/NLRP3 axis. Furthermore, the composite hydrogel combined with ADSCs attenuated the in vivo degeneration of rat IVDs, maintained IVD tissue integrity and accelerated the synthesis of NP-like extracellular matrix. Therefore, the KGN@PLGA-GelMA/PRP composite hydrogel is a promising strategy for stem cell-based therapies of IDD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shuguang Wang
- Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
5
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Li W, Zhao H, Xiong Z, Li C, Guan J, Liu T, Yang Y, Yu X. Evaluation of the Efficacy of Stem Cell Therapy in Animal Models of Intervertebral Disc Degeneration Based on Imaging Indicators: A Systematic Review and Meta-Analysis. Stem Cells Int 2022; 2022:2482653. [PMID: 36093439 PMCID: PMC9453002 DOI: 10.1155/2022/2482653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study is to make a systematic review of the therapeutic effect of stem cells in animal models of disc degeneration from an imaging point of view. Methods Data were extracted by searching electronic databases for RCTs that met the inclusion criteria. Data analysis was performed using RevMan 5.3 and STATA 15.1 software. This meta-analysis was registered with INPLASY, registration number INPLASY202240148. Results A total of 34 studies were included, covering four species of animals, rabbits, sheep, rats, and mice, with a total of 1163 intervertebral discs. In terms of DHI, the efficacy of stem cell group in rabbits (P < 0.001), mice (P < 0.001), sheep (P < 0.001), and rats (P = 0.001) was better than that in control group. In terms of disc height, the efficacy of stem cell group in rats (P < 0.001) was better than that in control group, while in sheep (P = 0.355), there was no statistical difference between two groups. In terms of MRI index, the efficacy of stem cell group in rats (P < 0.001), mice (P < 0.001), and rabbits (P = 0.016) was better than that in control group. In terms of MRI signal score, the efficacy of stem cell group in rabbits (P < 0.001) was better than that of control group. In terms of T2 signal intensity, stem cell group was more effective than control group in rabbits (P < 0.001), mice (P < 0.001), and rats (P = 0.003). Conclusion Stem cell therapy can improve intervertebral disc-related imaging parameters in animal models of disc degeneration, indicating that stem cell therapy has a repairing effect on intervertebral discs. However, given the heterogeneity and limitations of this study, this conclusion still needs to be tested by a large number of studies.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | | | - Chuanhong Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jianbin Guan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
7
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
8
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
9
|
Zoetebier B, Schmitz T, Ito K, Karperien M, Tryfonidou MA, Paez J. Injectable hydrogels for articular cartilage and nucleus pulposus repair: Status quo and prospects. Tissue Eng Part A 2022; 28:478-499. [PMID: 35232245 DOI: 10.1089/ten.tea.2021.0226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified.
Collapse
Affiliation(s)
- Bram Zoetebier
- University of Twente Faculty of Science and Technology, 207105, Developmental BioEngineering , Drienerlolaan 5, Enschede, Netherlands, 7500 AE;
| | - Tara Schmitz
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands;
| | - Keita Ito
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, GEMZ 4.115, Eindhoven, Netherlands, 5600 MB;
| | | | - Marianna A Tryfonidou
- Utrecht University, Faculty of Veterinary Medicine, Clinical Sciences of Companion Animals, Yalelaan 108, Utrecht, Netherlands, 3584 CM;
| | - Julieta Paez
- University of Twente Faculty of Science and Technology, 207105, Developmental Bioengineering, University of Twente P.O. Box 217, Enschede The Netherlands, Enschede, Netherlands, 7500 AE;
| |
Collapse
|