1
|
Xu Z, Arkudas A, Munawar MA, Schubert DW, Fey T, Weisbach V, Mengen LM, Horch RE, Cai A. Schwann Cells Do Not Promote Myogenic Differentiation in the EPI Loop Model. TISSUE ENGINEERING PART A 2024; 30:244-256. [PMID: 38063005 DOI: 10.1089/ten.tea.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In skeletal muscle tissue engineering, innervation and vascularization play an essential role in the establishment of functional skeletal muscle. For adequate three-dimensional assembly, biocompatible aligned nanofibers are beneficial as matrices for cell seeding. The aim of this study was to analyze the impact of Schwann cells (SC) on myoblast (Mb) and adipogenic mesenchymal stromal cell (ADSC) cocultures on poly-ɛ-caprolactone (PCL)-collagen I-nanofibers in vivo. Human Mb/ADSC cocultures, as well as Mb/ADSC/SC cocultures, were seeded onto PCL-collagen I-nanofiber scaffolds and implanted into the innervated arteriovenous loop model (EPI loop model) of immunodeficient rats for 4 weeks. Histological staining and gene expression were used to compare their capacity for vascularization, immunological response, myogenic differentiation, and innervation. After 4 weeks, both Mb/ADSC and Mb/ADSC/SC coculture systems showed similar amounts and distribution of vascularization, as well as immunological activity. Myogenic differentiation could be observed in both groups through histological staining (desmin, myosin heavy chain) and gene expression (MYOD, MYH3, ACTA1) without significant difference between groups. Expression of CHRNB and LAMB2 also implied neuromuscular junction formation. Our study suggests that the addition of SC did not significantly impact myogenesis and innervation in this model. The implanted motor nerve branch may have played a more significant role than the presence of SC.
Collapse
Affiliation(s)
- Zhou Xu
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Muhammad Azeem Munawar
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lilly M Mengen
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aijia Cai
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Ju WS, Seo K, Lee BR, Park MR, Lee MG, Byun SJ, Yang H, Kim Y, Ock SA. Potential Application of Muscle Precursor Cells from Male Specific-Pathogen-Free (SPF) Chicken Embryos in In Vitro Agriculture. ANIMALS 2023; 13:1887. [PMID: 37889836 PMCID: PMC10251866 DOI: 10.3390/ani13111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023]
Abstract
This study examined the potential benefits of male specific-pathogen-free (SPF) White Leghorn embryos in cellular agriculture for sustainable and ethical poultry meat production-addressing traditional farming challenges, including disease outbreaks of Salmonella and Avian influenza. We isolated myogenic precursor cells (MPCs) from the thigh muscles (Musculus femoris) of 12.5-day-old embryos from 10 SPF White Leghorns that tested negative for Salmonella. We randomly selected MPCs from three males and three females, isolated them using a modified pre-plating (pp) method, and compared their in vitro development. After 1 h (pp1) and 2 h (pp2) of incubation, they were transferred to a new dish to remove fast-adhering cells and cultured (pp3). Isolated MPCs had a 69% positive reaction to Pax7. During proliferation, no differences were observed in PAX7, MYF5, or MYOD expression between the male and female MPCs. However, after five days of differentiation, the expression of late myogenic factors-MYOG and MYF6-significantly increased in all MPCs. Notably, MYOG expression was 1.9 times higher in female than in male MPCs. This impacted MYMK's expression pattern. Despite this, the myotube fusion index did not differ between the sexes. Muscle cells from male SPF-laying chicken embryos are promising for developing clean animal-cell-derived protein sources via resource recycling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science (NIAS), Rural Development Administration (RDA), 1500 Kongjwipatjwi-ro, Wanju-gun 565-851, JB, Republic of Korea
| |
Collapse
|
3
|
Ock SA, Seo KM, Ju WS, Kim YI, Wi HY, Lee P. Effect of Serum and Oxygen on the In Vitro Culture of Hanwoo Korean Native Cattle-Derived Skeletal Myogenic Cells Used in Cellular Agriculture. FOODS 2023; 12:foods12071384. [PMID: 37048206 PMCID: PMC10093918 DOI: 10.3390/foods12071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Skeletal muscle-derived myogenic cells (SKMCs) are novel protein sources capable of replacing animal meat. However, SKMCs have not been commercialized owing to poor productivity and the high cost of in vitro cell culture. Therefore, we cultured SKMCs in varying serum (5–20%) and oxygen concentrations (5–20%) to investigate the parameters that most impact cell productivity (serum, hypoxia, and culture medium) and examined cell proliferation ability and genes involved in myogenesis/proliferation/apoptosis/reactive oxygen species (ROS). In fetal bovine serum (FBS) groups, hypoxia induction doubled cell number, and the 20% FBS/normoxia group exhibited similar cell numbers as 5% FBS/5% hypoxia, confirming that 5% hypoxia reduced serum requirement by four-fold. The use of 20% FBS downregulated MTF5/MYOD1/MYOG/MYH1, whereas hypoxia induction with ≤10% FBS upregulated them. Although 20% FBS lowered TERT expression through rapid cell proliferation, NOX1, a major factor of ROS, was suppressed. DMEM/F12 demonstrated better differentiation potential than F10 by upregulating MYF3/MYOD1/MYOG/MYH1 and downregulating MSTN, particularly DMEM/F12 with 2% FBS/5% hypoxia. The myogenic fusion index was higher in DMEM/F12 without FBS than in DMEM/F12 with FBS (0.5–5%); however, the total nuclei number was reduced owing to apoptosis. Therefore, high serum levels are essential in influencing SKMC growth, followed by hypoxia as a synergistic component.
Collapse
|
4
|
Kim T, Hong J, Kim J, Cho J, Kim Y. Two-Dimensional Peptide Assembly via Arene-Perfluoroarene Interactions for Proliferation and Differentiation of Myoblasts. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2023; 145:1793-1802. [PMID: 36625369 DOI: 10.1021/jacs.2c10938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Supramolecular assembly based on aromatic interactions can provide well-defined nanostructures with an understanding of intermolecular interactions at the molecular level. The peptide assembly via a supramolecular approach can overcome the inherent limitations of bioactive peptides, such as proteolytic degradations and rapid internalizations into the cytosol. Although extensive research has been carried out on supramolecular peptide materials with a two-dimensional (2D) structure, more needs to be reported on biological activity studies using well-defined 2D peptide materials. Physical and chemical properties of the 2D peptide assembly attributed to their large surface area and flexibility can show low cytotoxicity, enhanced molecular loading, and higher bioconjugation efficiency in biological applications. Here, we report supramolecular 2D materials based on the pyrene-grafted amphiphilic peptide, which contains a peptide sequence (Asp-Gly-Glu-Ala; DGEA) that is reported to bind to the integrin α2β1 receptor in 2D cell membranes. The addition of octafluoronaphthalene (OFN) to the pyrene-grafted peptide could induce a well-ordered 2D assembly by face-centered arene-perfluoroarene stacking. The DGEA-peptide 2D assembly with a flat structure, structural stability against enzymatic degradations, and a larger size can enhance the proliferation and differentiation of muscle cells via continuous interactions with cell membrane receptors integrin α2β1 showing a low intracellular uptake (15%) compared to that (62%) of the vesicular peptide assembly. These supramolecular approaches via the arene-perfluoroarene interaction provide a strategy to fabricate well-defined 2D peptide materials with an understanding of assembly at the molecular level for the next-generation peptide materials.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Jinwoo Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Gyeongbuk, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea.,Department of Integrative Energy Engineering, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
5
|
Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle. COMMUNICATIONS BIOLOGY 2022; 5:1121. [PMID: 36273106 PMCID: PMC9588010 DOI: 10.1038/s42003-022-04088-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
Skeletal muscle adaptations to exercise have been associated with a range of health-related benefits, but cell type-specific adaptations within the muscle are incompletely understood. Here we use single-cell sequencing to determine the effects of exercise on cellular composition and cell type-specific processes in human skeletal muscle before and after intense exercise. Fifteen clusters originating from six different cell populations were identified. Most cell populations remained quantitatively stable after exercise, but a large transcriptional response was observed in mesenchymal, endothelial, and myogenic cells, suggesting that these cells are specifically involved in skeletal muscle remodeling. We found three subpopulations of myogenic cells characterized by different maturation stages based on the expression of markers such as PAX7, MYOD1, TNNI1, and TNNI2. Exercise accelerated the trajectory of myogenic progenitor cells towards maturation by increasing the transcriptional features of fast- and slow-twitch muscle fibers. The transcriptional regulation of these contractile elements upon differentiation was validated in vitro on primary myoblast cells. The cell type-specific adaptive mechanisms induced by exercise presented here contribute to the understanding of the skeletal muscle adaptations triggered by physical activity and may ultimately have implications for physiological and pathological processes affecting skeletal muscle, such as sarcopenia, cachexia, and glucose homeostasis. Single-cell RNA-sequencing of human skeletal muscle before and after exercise highlights how physical activity changes the composition and transcriptomic profile of muscle tissue.
Collapse
|
6
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. ELIFE 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
7
|
Konuk Tokak E, Çetin Altındal D, Akdere ÖE, Gümüşderelioğlu M. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112528. [PMID: 34857307 DOI: 10.1016/j.msec.2021.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
In skeletal muscle tissue engineering, success has not been achieved yet, since the properties of the tissue cannot be fully mimicked. The aim of this study is to investigate the potential use of poly-3-hydroxybutyrate (P3HB)/poly-β-alanine (PBA) fibrous tissue scaffolds with piezoelectric properties for skeletal muscle regeneration. Random and aligned P3HB/PBA (5:1) fibrous matrices were prepared by electrospinning with average diameters of 951 ± 153 nm and 891 ± 247 nm, respectively. X-ray diffraction (XRD) analysis showed that PBA reinforcement and aligned orientation of fibers reduced the crystallinity and brittleness of P3HB matrix. While tensile strength and elastic modulus of random fibrous matrices were determined as 3.9 ± 1.0 MPa and 86.2 ± 10.6 MPa, respectively, in the case of aligned fibers they increased to 8.5 ± 1.8 MPa and 378.2 ± 4.2 MPa, respectively. Aligned matrices exhibited a soft and an elastic behaviour with ~70% elongation in similar to the natural tissue. For the first time, d33 piezoelectric modulus of P3HB/PBA matrices were measured as 5 pC/N and 5.3 pC/N, for random and aligned matrices, respectively. Cell culture studies were performed with C2C12 myoblastic cell line. Both of random and aligned P3HB/PBA fibrous matrices supported attachment and proliferation of myoblasts, but cells cultured on aligned fibers formed regular and thick myofibril structures similar to the native muscle tissue. Reverse transcription polymerase chain reaction (RT-qPCR) analysis indicated that MyoD gene was expressed in the cells cultured on both fiber orientation, however, on the aligned fibers significant increase was determined in Myogenin and Myosin Heavy Chain (MHC) gene expressions, which indicate functional tubular structures. The results of RT-qPCR analysis were also supported with immunohistochemistry for myogenic markers. These in vitro studies have shown that piezoelectric P3HB/PBA aligned fibrous scaffolds can successfully mimic skeletal muscle tissue with its superior chemical, morphological, mechanical, and electroactive properties.
Collapse
Affiliation(s)
- Elvan Konuk Tokak
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Damla Çetin Altındal
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Özge Ekin Akdere
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey; Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey.
| |
Collapse
|
8
|
Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced Glycation End-Products in Skeletal Muscle Aging. BIOENGINEERING 2021; 8:bioengineering8110168. [PMID: 34821734 PMCID: PMC8614898 DOI: 10.3390/bioengineering8110168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
Advanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve’s role in this aging process. Specific directions for future research are also discussed, with the understudied role of AGEs in skeletal muscle aging highlighted. Despite more than a half century of research, the role that intramuscular collagen aggregation and cross-linking plays in sarcopenia is well accepted yet not well integrated with current knowledge of AGE’s effects on muscle physiology. Furthermore, the possible impact that motor nerve aging has on intramuscular cross-linking and muscular AGE levels is posited.
Collapse
Affiliation(s)
- Lucas C. Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Gerontology, College of Health Professions, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Correspondence:
| |
Collapse
|
9
|
Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2020; 21:ijms21207545. [PMID: 33066271 PMCID: PMC7589566 DOI: 10.3390/ijms21207545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Many studies evaluated the short-term in vitro toxicity of nanoparticles (NPs); however, long-term effects are still not adequately understood. Here, we investigated the potential toxic effects of biomedical (polyacrylic acid and polyethylenimine coated magnetic NPs) and two industrial (SiO2 and TiO2) NPs following different short-term and long-term exposure protocols on two physiologically different in vitro models that are able to differentiate: L6 rat skeletal muscle cell line and biomimetic normal porcine urothelial (NPU) cells. We show that L6 cells are more sensitive to NP exposure then NPU cells. Transmission electron microscopy revealed an uptake of NPs into L6 cells but not NPU cells. In L6 cells, we obtained a dose-dependent reduction in cell viability and increased reactive oxygen species (ROS) formation after 24 h. Following continuous exposure, more stable TiO2 and polyacrylic acid (PAA) NPs increased levels of nuclear factor Nrf2 mRNA, suggesting an oxidative damage-associated response. Furthermore, internalized magnetic PAA and TiO2 NPs hindered the differentiation of L6 cells. We propose the use of L6 skeletal muscle cells and NPU cells as a novel approach for assessment of the potential long-term toxicity of relevant NPs that are found in the blood and/or can be secreted into the urine.
Collapse
Affiliation(s)
- Matej Skočaj
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Klemen Strojan
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Jasna Lojk
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Vladimir Boštjan Bregar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Correspondence: (P.V.); (M.P.)
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.V.); (M.P.)
| |
Collapse
|
10
|
González-Mariscal I, Montoro RA, O'Connell JF, Kim Y, Gonzalez-Freire M, Liu QR, Alfaras I, Carlson OD, Lehrmann E, Zhang Y, Becker KG, Hardivillé S, Ghosh P, Egan JM. Muscle cannabinoid 1 receptor regulates Il-6 and myostatin expression, governing physical performance and whole-body metabolism. FASEB JOURNAL : OFFICIAL PUBLICATION OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY 2019; 33:5850-5863. [PMID: 30726112 DOI: 10.1096/fj.201801145r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sarcopenic obesity, the combination of skeletal muscle mass and function loss with an increase in body fat, is associated with physical limitations, cardiovascular diseases, metabolic stress, and increased risk of mortality. Cannabinoid receptor type 1 (CB1R) plays a critical role in the regulation of whole-body energy metabolism because of its involvement in controlling appetite, fuel distribution, and utilization. Inhibition of CB1R improves insulin secretion and insulin sensitivity in pancreatic β-cells and hepatocytes. We have now developed a skeletal muscle-specific CB1R-knockout (Skm-CB1R-/-) mouse to study the specific role of CB1R in muscle. Muscle-CB1R ablation prevented diet-induced and age-induced insulin resistance by increasing IR signaling. Moreover, muscle-CB1R ablation enhanced AKT signaling, reducing myostatin expression and increasing IL-6 secretion. Subsequently, muscle-CB1R ablation increased myogenesis through its action on MAPK-mediated myogenic gene expression. Consequently, Skm-CB1R-/- mice had increased muscle mass and whole-body lean/fat ratio in obesity and aging. Muscle-CB1R ablation improved mitochondrial performance, leading to increased whole-body muscle energy expenditure and improved physical endurance, with no change in body weight. These results collectively show that CB1R in muscle is sufficient to regulate whole-body metabolism and physical performance and is a novel target for the treatment of sarcopenic obesity. -González-Mariscal, I., Montoro, R. A., O'Connell, J. F., Kim, Y., Gonzalez-Freire, M., Liu, Q.-R., Alfaras, I., Carlson, O. D., Lehrmann, E., Zhang, Y., Becker, K. G., Hardivillé, S., Ghosh, P., Egan, J. M. Muscle cannabinoid 1 receptor regulates Il-6 and myostatin expression, governing physical performance and whole-body metabolism.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rodrigo A Montoro
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Yoo Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health, Baltimore, Maryland, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Irene Alfaras
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health, Baltimore, Maryland, USA
| | - Olga D Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Stéphan Hardivillé
- Unité Propre de Recherche (UMR) 8576-Unité de Glycobiologie Structurale et Fonctionelle (UGSF), Centre National de la Recherche (CNRS), Université Lille, Lille, France
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
11
|
Chaturvedi V, Naskar D, Kinnear BF, Grenik E, Dye DE, Grounds MD, Kundu SC, Coombe DR. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2017; 11:3178-3192. [PMID: 27878977 PMCID: PMC5724504 DOI: 10.1002/term.2227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022]
Abstract
Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three-dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well-aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two-dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. StartCopTextStartCopText© 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Deboki Naskar
- Department of BiotechnologyIndian Institute of TechnologyKharagpurWest BengalIndia
| | - Beverley F. Kinnear
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Elizabeth Grenik
- Nanochemistry Research Institute, Faculty of Science, Engineering and ComputingCurtin UniversityPerthWestern Australia
| | - Danielle E. Dye
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Miranda D. Grounds
- School of Anatomy, Physiology and Human BiologyUniversity of Western AustraliaPerthWestern Australia
| | - Subhas C. Kundu
- Department of BiotechnologyIndian Institute of TechnologyKharagpurWest BengalIndia
- Present address:
3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoAvePark ‐ 4805‐017 BarcoGuimaraesPortugal
| | - Deirdre R. Coombe
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| |
Collapse
|
12
|
Yoshida M, Kitaoka S, Egawa N, Yamane M, Ikeda R, Tsukita K, Amano N, Watanabe A, Morimoto M, Takahashi J, Hosoi H, Nakahata T, Inoue H, Saito MK. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. STEM CELL REPORTS 2015; 4:561-8. [PMID: 25801509 PMCID: PMC4400613 DOI: 10.1016/j.stemcr.2015.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 12/30/2022]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations of the survival of motor neuron 1 (SMN1) gene. In the pathogenesis of SMA, pathological changes of the neuromuscular junction (NMJ) precede the motor neuronal loss. Therefore, it is critical to evaluate the NMJ formed by SMA patients' motor neurons (MNs), and to identify drugs that can restore the normal condition. We generated NMJ-like structures using MNs derived from SMA patient-specific induced pluripotent stem cells (iPSCs), and found that the clustering of the acetylcholine receptor (AChR) is significantly impaired. Valproic acid and antisense oligonucleotide treatment ameliorated the AChR clustering defects, leading to an increase in the level of full-length SMN transcripts. Thus, the current in vitro model of AChR clustering using SMA patient-derived iPSCs is useful to dissect the pathophysiological mechanisms underlying the development of SMA, and to evaluate the efficacy of new therapeutic approaches.
Collapse
Affiliation(s)
- Michiko Yoshida
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shiho Kitaoka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naohiro Egawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Mayu Yamane
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryunosuke Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kayoko Tsukita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Amano
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
13
|
Stern-Straeter J, Hörmann K. [New perspectives in skeletal muscle tissue engineering]. HNO 2014; 62:415-22. [PMID: 24916349 DOI: 10.1007/s00106-014-2863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Due to the enormous expansion of knowledge in the fields of stem cell research and biomaterials, skeletal muscle tissue engineering represents a rapidly developing field of biomedical research. This article provides a general overview of skeletal muscle tissue engineering, including a discussion of recent findings and future research perspectives. Additionally, the results of myogenic differentiation of human mesenchymal stem cells and satellite cells are presented.
Collapse
Affiliation(s)
- J Stern-Straeter
- Universitäts-Hals-Nasen-Ohren-Klinik Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer-1-3, 68167, Mannheim, Deutschland,
| | | |
Collapse
|
14
|
BIRK RICHARD, SOMMER ULRICH, FABER ANNE, ADERHOLD CHRISTOPH, SCHULZ JOHANNESD, HÖRMANN KARL, GOESSLER ULRICHREINHART, STERN-STRAETER JENS. Evaluation of the effect of static magnetic fields combined with human hepatocyte growth factor on human satellite cell cultures. MOLECULAR MEDICINE REPORTS 2014; 9:2328-34. [DOI: 10.3892/mmr.2014.2083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/18/2014] [Indexed: 11/05/2022]
|
15
|
Stern-Straeter J, Bonaterra GA, Juritz S, Birk R, Goessler UR, Bieback K, Bugert P, Schultz J, Hörmann K, Kinscherf R, Faber A. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 2013; 33:160-70. [PMID: 24220225 DOI: 10.3892/ijmm.2013.1555] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/25/2013] [Indexed: 11/06/2022]
Abstract
The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM-MSCs. The strongest DES expression was observed using the 30% conditioned cell culture medium. The detection of myogenic markers using different cell culture media as stimuli was only achieved in the AT-MSCs, but not in the BM-MSCs. The strongest myogenic differentiation, in terms of the markers examined, was induced by the 30% conditioned cell culture medium.
Collapse
Affiliation(s)
- Jens Stern-Straeter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jana S, Cooper A, Zhang M. Chitosan scaffolds with unidirectional microtubular pores for large skeletal myotube generation. ADVANCED HEALTHCARE MATERIALS 2013. [PMID: 23184507 DOI: 10.1002/adhm.201200177] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Soumen Jana
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|