1
|
Sahvieh S, Oryan A, Hassanajili S, Kamali A. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell Tissue Res 2021; 383:735-750. [PMID: 32924069 DOI: 10.1007/s00441-020-03284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell-loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.
Collapse
Affiliation(s)
- Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Cámara-Torres M, Sinha R, Mota C, Moroni L. Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media density and viscosity. Acta Biomater 2020; 101:183-195. [PMID: 31731025 DOI: 10.1016/j.actbio.2019.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
Abstract
In order to ensure the long-term in vitro and in vivo functionality of cell-seeded 3D scaffolds, an effective and reliable method to control cell seeding efficiency and distribution is crucial. Static seeding on 3D additive manufactured scaffolds made of synthetic polymers still remains challenging, as it often results in poor cell attachment, high cell sedimentation and non-uniform cell distribution, due to gravity and to the intrinsic macroporosity and surface chemical properties of the scaffolds. In this study, the biocompatible macromolecules dextran and Ficoll (Ficoll-Paque) were used for the first time as temporary supplements to alter the viscosity and density of the seeding media, respectively, and improve the static seeding output. The addition of these macromolecules drastically reduced the cell sedimentation velocities, allowing for homogeneous cell attachment to the scaffold filaments. Both dextran and Ficoll-Paque -based seeding methods supported human mesenchymal stromal cells viability and osteogenic differentiation post-seeding. Interestingly, the improved cell distribution led to increased matrix production and mineralization compared to scaffolds seeded by conventional static method. These results suggest a simple and universal method for an efficient seeding of 3D additive manufactured scaffolds, independent of their material and geometrical properties, and applicable for bone and various other tissue regeneration. STATEMENT OF SIGNIFICANCE: Additive manufacturing has emerged as one of the desired technologies to fabricate complex and patient-specific 3D scaffolds for bone regeneration. Along with the technology, new synthetic polymeric materials have been developed to meet processability requirements, as well as the mechanical properties and biocompatibility necessary for the application. Yet, there is still lack of methodology for a universal cell seeding method applicable to all additive manufactured 3D scaffolds regardless of their characteristics. We believe that our simple and reliable method, which is based on adjusting the cell settling velocity to aid cell attachment, could potentially help to maximize the efficiency, and therefore, functionality of cell-seeded constructs. This is of great importance when aiming for both in vitro and future clinical applications.
Collapse
|
3
|
De Luca A, Vitrano I, Costa V, Raimondi L, Carina V, Bellavia D, Conoscenti G, Di Falco R, Pavia FC, La Carrubba V, Brucato V, Giavaresi G. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair. J Biosci Bioeng 2019; 129:250-257. [PMID: 31506241 DOI: 10.1016/j.jbiosc.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-l-lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p < 0.0005), up-regulation of RUNX2, ALPL, SPP1 (p < 0.0005) and SOX9 (p < 0.005) gene expression, and more calcium nodule formation (p < 0.0005) were observed in d3D cultures in comparison to s3D ones over time. Dynamic 3D culture, mimicking the mechanical signals of bone environment, improved significantly osteogenic differentiation of hMSCs on PLLA/nHA scaffold, without the addition of growth factors, confirming this composite scaffold suitable for bone regeneration.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Ilenia Vitrano
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Gioacchino Conoscenti
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Rossella Di Falco
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Francesco Carfì Pavia
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Vincenzo La Carrubba
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Valerio Brucato
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| |
Collapse
|
4
|
Zhang ZZ, Zhang HZ, Zhang ZY. 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp Ther Med 2018; 17:79-90. [PMID: 30651767 PMCID: PMC6307523 DOI: 10.3892/etm.2018.6947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Repairing critical-sized bone defects has been a major challenge for orthopedic surgeons in the clinic. The generation of functioning bone tissue scaffolds using osteogenic induction factors is a promising method to facilitate bone healing. In the present study, three-dimensional (3D) printing of a poly(lactic-co-glycolic acid) (PLGA) scaffold with simvastatin (SIM) release functioning was generated by rapid prototyping, which was incorporated with collagen for surface activation, and was finally mixed with SIM-loaded PLGA microspheres. In vitro assays with bone marrow-derived mesenchymal stem cells were conducted. For the in vivo study, scaffolds were implanted into segmental defects created on the femurs of Sprague-Dawley rats. At 4 and 12 weeks following surgery, X-ray, micro-computed tomography and histological analysis were performed in order to evaluate bone regeneration. The results demonstrated that collagen functionalization of PLGA produced better cell adhesion, while the sustained release of SIM promoted greater cell proliferation with no significant cytotoxicity, compared with the blank PCL scaffold. Furthermore, in vivo experiments also confirmed that SIM-loaded scaffolds played a significant role in promoting bone regeneration. In conclusion, the present study successfully manufactured a 3D printing PLGA scaffold with sustained SIM release, which may meet the requirements for bone healing, including good mechanical strength and efficient osteoinduction ability. Thus, the results are indicative of a promising bone substitute to be used in the clinic.
Collapse
Affiliation(s)
- Zhan-Zhao Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Hui-Zhong Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Zhi-Yong Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
5
|
Prabha RD, Nair BP, Ditzel N, Kjems J, Nair PD, Kassem M. Strontium functionalized scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:509-515. [PMID: 30423735 DOI: 10.1016/j.msec.2018.09.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
Abstract
Drug functionalized scaffolds are currently being employed to improve local delivery of osteoprotective drugs with the aim of reducing their loading dose as well as unwanted systemic complications. In this study we tested a poly-(ε) caprolactone (PCL)-laponite-strontium ranelate (SRA) composite scaffold (PLS3) for its abilities to support growth and osteogenic differentiation of human marrow derived stromal stem cells (hMSC). The in vitro experiments showed the PLS3 scaffold supported cell growth and osteogenic differentiation. The in vivo implantation of hMSC seeded PLS3 scaffold in immunocompromised mice revealed vascularized ectopic bone formation. PLS3 scaffolds can be useful in bone regenerative applications in the fields of orthopaedics and dentistry.
Collapse
Affiliation(s)
- Rahul D Prabha
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Orthodontics and Dentofacial Orthopaedics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| | - Bindu P Nair
- Division of Tissue Engineering and Regeneration Technologies (DTERT), Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, India
| | - Nicholas Ditzel
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jorgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies (DTERT), Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, India
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Flow perfusion rate modulates cell deposition onto scaffold substrate during cell seeding. Biomech Model Mechanobiol 2017; 17:675-687. [PMID: 29188392 PMCID: PMC5948308 DOI: 10.1007/s10237-017-0985-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
The combination of perfusion bioreactors with porous scaffolds is beneficial for the transport of cells during cell seeding. Nonetheless, the fact that cells penetrate into the scaffold pores does not necessarily imply the interception of cells with scaffold substrate and cell attachment. An in vitro perfusion system was built to relate the selected flow rate with seeding efficiency. However, the in vitro model does not elucidate how the flow rate affects the transport and deposition of cells onto the scaffold. Thus, a computational model was developed mimicking in vitro conditions to identify the mechanisms that bring cells to the scaffold from suspension flow. Static and dynamic cell seeding configurations were investigated. In static seeding, cells sediment due to gravity until they encounter the first obstacle. In dynamic seeding, 12, 120 and 600 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {l/min}$$\end{document}μl/min flow rates were explored under the presence or the absence of gravity. Gravity and secondary flow were found to be key factors for cell deposition. In vitro and in silico seeding efficiencies are in the same order of magnitude and follow the same trend with the effect of fluid flow; static seeding results in higher efficiency than dynamic perfusion although irregular spatial distribution of cells was found. In dynamic seeding, 120 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {l/min}$$\end{document}μl/min provided the best seeding results. Nevertheless, the perfusion approach reports low efficiencies for the scaffold used in this study which leads to cell waste and low density of cells inside the scaffold. This study suggests gravity and secondary flow as the driving mechanisms for cell-scaffold deposition. In addition, the present in silico model can help to optimize hydrodynamic-based seeding strategies prior to experiments and enhance cell seeding efficiency.
Collapse
|
7
|
Mitra D, Whitehead J, Yasui OW, Leach JK. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials 2017; 146:29-39. [PMID: 28898756 PMCID: PMC5618709 DOI: 10.1016/j.biomaterials.2017.08.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation.
Collapse
Affiliation(s)
- Debika Mitra
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Osamu W Yasui
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
8
|
µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold. J Mech Behav Biomed Mater 2017; 75:463-469. [DOI: 10.1016/j.jmbbm.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
|
9
|
Leferink AM, Chng YC, van Blitterswijk CA, Moroni L. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Front Bioeng Biotechnol 2015; 3:169. [PMID: 26557644 PMCID: PMC4617101 DOI: 10.3389/fbioe.2015.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.
Collapse
Affiliation(s)
- Anne M Leferink
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | | | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| |
Collapse
|
10
|
Murphy CM, Duffy GP, Schindeler A, O'brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A 2015; 104:291-304. [DOI: 10.1002/jbm.a.35567] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Ciara M. Murphy
- School of Medicine & Medical Science; University College Dublin; Dublin Ireland
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
| | - Garry P. Duffy
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit the Children's Hospital at Westmead
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney Australia
| | - Fergal J. O'brien
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| |
Collapse
|
11
|
Vascularisation in regenerative therapeutics and surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:225-38. [DOI: 10.1016/j.msec.2015.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023]
|
12
|
Andersen T, Auk-Emblem P, Dornish M. 3D Cell Culture in Alginate Hydrogels. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:133-61. [PMID: 27600217 PMCID: PMC4996398 DOI: 10.3390/microarrays4020133] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell-matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.
Collapse
Affiliation(s)
| | - Pia Auk-Emblem
- FMC BioPolymer AS, Industriveien 33, 1337 Sandvika, Norway.
| | | |
Collapse
|
13
|
Jensen J, Kraft DCE, Lysdahl H, Foldager CB, Chen M, Kristiansen AA, Rölfing JHD, Bünger CE. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 2014; 21:729-39. [PMID: 25252795 DOI: 10.1089/ten.tea.2014.0177] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and β-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×10(6) human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90(+), CD73(+), CD105(+), and CD14(-). DNA, ALP, and Ca(2+) assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca(2+) deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in even cell dispersion throughout the scaffold. In conclusion, DPSCs could be a possible alternate cell source for bone tissue engineering. The HT-PCL scaffold showed promising results in terms of promoting cell migration and osteogenic differentiation, which warrants future in vivo studies.
Collapse
Affiliation(s)
- Jonas Jensen
- 1 Orthopaedic Research Laboratory, Aarhus University Hospital , Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds. PLoS One 2014; 9:e109568. [PMID: 25329879 PMCID: PMC4199619 DOI: 10.1371/journal.pone.0109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022] Open
Abstract
Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.
Collapse
|
15
|
Yeo M, Kim G. Optimal size of cell-laden hydrogel cylindrical struts for enhancing the cellular activities and their application to hybrid scaffolds. J Mater Chem B 2014; 2:6830-6838. [DOI: 10.1039/c4tb00785a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Faghihi F, Papadimitropoulos A, Martin I, Eslaminejad MB. Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Andersen T, Markussen C, Dornish M, Heier-Baardson H, Melvik JE, Alsberg E, Christensen BE. In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng Part A 2013; 20:600-10. [PMID: 24125496 DOI: 10.1089/ten.tea.2013.0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential cellular functions are often lost under culture in traditional two-dimensional (2D) systems. Therefore, biologically more realistic three-dimensional (3D) cell culture systems are needed that provide mechanical and biochemical cues which may otherwise be unavailable in 2D. For the present study, an alginate-based hydrogel system was used in which cells in an alginate solution were seeded onto dried alginate foams. A uniform distribution of NIH:3T3 and NHIK 3025 cells entrapped within the foam was achieved by in situ gelation induced by calcium ions integrated in the foam. The seeding efficiency of the cells was about 100% for cells added in a seeding solution containing 0.1-1.0% alginate compared with 18% when seeded without alginate. The NHIK 3025 cells were allowed to proliferate and form multi-cellular structures inside the transparent gel that were later vital stained and evaluated by confocal microscopy. Gels were de-gelled at different time points to isolate the multi-cellular structures and to determine the spheroid growth rate. It was also demonstrated that the mechanical properties of the gel could largely be varied through selection of type and concentration of the applied alginate and by immersing the already gelled disks in solutions providing additional gel-forming ions. Cells can efficiently be incorporated into the gel, and single cells and multi-cellular structures that may be formed inside can be retrieved without influencing cell viability or contaminating the sample with enzymes. The data show that the current system may overcome some limitations of current 3D scaffolds such as cell retrieval and in situ cell staining and imaging.
Collapse
|
18
|
Leferink AM, Hendrikson WJ, Rouwkema J, Karperien M, van Blitterswijk CA, Moroni L. Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. J Tissue Eng Regen Med 2013; 10:679-89. [PMID: 24668928 DOI: 10.1002/term.1842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/20/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
Abstract
In regenerative medicine studies, cell seeding efficiency is not only optimized by changing the chemistry of the biomaterials used as cell culture substrates, but also by altering scaffold geometry, culture and seeding conditions. In this study, the importance of seeding parameters, such as initial cell number, seeding volume, seeding concentration and seeding condition is shown. Human mesenchymal stem cells (hMSCs) were seeded into cylindrically shaped 4 × 3 mm polymeric scaffolds, fabricated by fused deposition modelling. The initial cell number ranged from 5 × 10(4) to 8 × 10(5) cells, in volumes varying from 50 µl to 400 µl. To study the effect of seeding conditions, a dynamic system, by means of an agitation plate, was compared with static culture for both scaffolds placed in a well plate or in a confined agarose moulded well. Cell seeding efficiency decreased when seeded with high initial cell numbers, whereas 2 × 10(5) cells seemed to be an optimal initial cell number in the scaffolds used here. The influence of seeding volume was shown to be dependent on the initial cell number used. By optimizing seeding parameters for each specific culture system, a more efficient use of donor cells can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A M Leferink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - W J Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - J Rouwkema
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - M Karperien
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands.,Department of Developmental Bioengineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - C A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - L Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| |
Collapse
|
19
|
Hong MH, Kim SM, Om JY, Kwon N, Lee YK. Seeding cells on calcium phosphate scaffolds using hydrogel enhanced osteoblast proliferation and differentiation. Ann Biomed Eng 2013; 42:1424-35. [PMID: 24129755 DOI: 10.1007/s10439-013-0926-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/07/2013] [Indexed: 01/07/2023]
Abstract
Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and β-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 μm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Columbia University Medical Center, 650 West 168th Street, New York, NY, 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Sun Y, Finne-Wistrand A, Albertsson AC, Xing Z, Mustafa K, Hendrikson WJ, Grijpma DW, Moroni L. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method. J Biomed Mater Res A 2012; 100:2739-49. [DOI: 10.1002/jbm.a.34210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/30/2012] [Indexed: 01/29/2023]
|
21
|
Kim YB, Kim G. Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33036a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|