1
|
Li H, Jiang Y, Liu M, Yu J, Feng X, Xu X, Wang H, Zhang J, Sun X, Yu Y. DNA methylation-mediated inhibition of MGARP is involved in impaired progeny testosterone synthesis in mice exposed to DBP in utero. ENVIRONMENTAL TOXICOLOGY 2023; 38:914-925. [PMID: 36602389 DOI: 10.1002/tox.23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The dibutyl phthalate (DBP) has been detected in fetuses and infants and can cause damage to the reproductive system in adulthood, but the exact mechanism remains unclear. Here, we aim to investigate the effects of intrauterine DBP exposure on offspring reproductive function and explore possible mechanisms. SPF C57BL/6 pregnant mice were given DBP (0.5, 5, 75 mg/kg/d) or corn oil from day 5 to day 19 by gavage. After weaning, the pups were fed a standard diet for 5 weeks. In addition, TM3 Leydig cell cultures were used to study the relevant mechanisms in vitro. The results showed that intrauterine DBP exposure could reduce sperm density and sperm motility, cause testicular tissue damage, down-regulate serum T and LH levels, and up-regulate serum FSH levels at 75 mg/kg/d. Western blot and methylation detection revealed intrauterine exposure to DBP down-regulated testosterone synthesis-related proteins StAR, P450scc, 3β-HSD, PKA, and PKC expression, while up-regulated the levels of methyltransferase proteins expression and DNA 5-methylcytosine (5mC) in testicular tissue of mouse offspring at 75 mg/kg/d. Further detection found in utero 75 mg/kg/d DBP exposure down-regulated MGARP protein expression, and induced incomplete methylation of the MGARP gene. An in vitro analysis showed that MGARP inhibition is involved in an impaired testosterone synthesis in TM3 cells. Cell culture results suggest that MGARP down-regulation may be involved in impaired testosterone production in monobutyl phthalate-treated cells. The present study revealed that 75 mg/kg/d DBP exposure in utero resulted in testosterone synthesis disorders and reproductive function impairment in mouse offspring, and the mechanism may be related to DNA methylation-mediated down-regulation of MGARP in the testis.
Collapse
Affiliation(s)
- Huan Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Beihua University, Jilin, China
| | - Yutong Jiang
- School of Traditional Chinese medicine, Southern Medical University, Guangzhou, China
| | - Minhui Liu
- School of Public Health, Beihua University, Jilin, China
| | - Jiaxin Yu
- School of Public Health, Beihua University, Jilin, China
| | - Xinyue Feng
- School of Public Health, Beihua University, Jilin, China
| | - Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Hongyan Wang
- School of Public Health, Beihua University, Jilin, China
| | - Jing Zhang
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Zang L, Lv H, Du J, Pan Y, Lin Y, Dai J. Association of phthalate exposure with low birth weight in couples conceiving naturally or via assisted reproductive technology in a prospective birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158852. [PMID: 36122707 DOI: 10.1016/j.scitotenv.2022.158852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have investigated the adverse effects of preconception phthalate (PAE) exposure on birth weight in couples receiving assisted reproductive technology (ART) compared to naturally conceived newborns. OBJECTIVES We examined the association between parental preconception/prenatal urinary phthalate exposure and low birth weight (LBW) risk in couples who conceived using ART or naturally. METHODS From the Jiangsu Birth Cohort Study (China), we recruited 544 couples who conceived after infertility treatment and 940 couples who conceived naturally and gave birth to a singleton infant between November 2014 and December 2019. Seventeen metabolites of phthalate and three metabolites of phthalate alternatives were analyzed in parental spot urine samples. Clinical data were collected from medical records. We used generalized linear models, elastic net regression, Bayesian kernel machine regression, and quantile-based g-computation to examine the individual and joint effects of parental phthalate exposure on birth weight and LBW risk ratios (RR). RESULTS The relationship between parental phthalate exposure and birth weight was consistent between ART and natural conception. Maternal exposure to mono-ethyl phthalate and mono-carboxyisooctyl phthalate was associated with an increased risk of LBW in ART-conceived infants (RR = 1.27; 95 % confidence interval (CI): 1.03, 1.56; and RR = 1.31; 95 % CI: 1.03, 1.67, respectively). In contrast, in the spontaneously conceived infants, higher paternal prenatal concentrations of mono-benzyl phthalate and mono-carboxyisononyl phthalate were associated with a 40 % and 53 % increase in LBW risk, respectively. Exposure to PAE mixtures was associated with LBW in ART-conceived infants, with the effects primarily driven by di-ethyl phthalate, benzylbutyl phthalate, and di-isononyl phthalate metabolites. Sex-specific LBW was observed, with females appearing to be more susceptible than males. CONCLUSIONS Maternal preconception and paternal prenatal exposure to phthalates were associated with increased risk of LBW in infants. Compared with natural conception, ART-conceived fetuses were more sensitive to PAE mixtures, which requires further attention.
Collapse
Affiliation(s)
- Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lv
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Jiangbo Du
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Lin
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Yedji RS, Sohm B, Salnot V, Guillonneau F, Cossu-Leguille C, Battaglia E. First Identification of a Large Set of Serine Hydrolases by Activity-Based Protein Profiling in Dibutyl Phthalate-Exposed Zebrafish Larvae. Int J Mol Sci 2022; 23:ijms232416060. [PMID: 36555700 PMCID: PMC9786740 DOI: 10.3390/ijms232416060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the involvement of several serine hydrolases (SHs) in the metabolism of xenobiotics such as dibutyl phthalate (DBP), no study has focused on mapping this enzyme class in zebrafish, a model organism frequently used in ecotoxicology. Here, we survey and identify active SHs in zebrafish larvae and search for biological markers of SH type after exposure to DBP. Zebrafish were exposed to 0, 5, and 100 µg/L DBP from 4 to 120 h post-fertilization. A significant decrease in vitellogenin expression level of about 2-fold compared to the control was found in larvae exposed to 100 µg/L DBP for 120 h. The first comprehensive profiling of active SHs in zebrafish proteome was achieved with an activity-based protein profiling (ABPP) approach. Among 49 SHs identified with high confidence, one was the carboxypeptidase ctsa overexpressed in larvae exposed to 100 µg/L DBP for 120 h. To the best of our knowledge, this is the first time that a carboxypeptidase has been identified as deregulated following exposure to DBP. The overall results indicate that targeted proteomics approaches, such as ABPP, can, therefore, be an asset for understanding the mechanism of action related to xenobiotics in ecotoxicology.
Collapse
Affiliation(s)
- Rodrigue S. Yedji
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Bénédicte Sohm
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Virginie Salnot
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
| | - François Guillonneau
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
- Unité Protéomique Clinique, Institut de Cancérologie de l’Ouest, CRCI2NA-UMR INSERM 1307/CNRS 6075, team03, 15, rue André Boquel, 49055 Angers, France
| | | | - Eric Battaglia
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
- Correspondence:
| |
Collapse
|
4
|
Zhang X, Huels A, Makuch R, Zhou A, Zheng T, Xia W, Gaskins A, Makuch J, Zhu Z, Zhu C, Qian Z, Xu S, Li Y. Association of exposure to ambient particulate matter with maternal thyroid function in early pregnancy. ENVIRONMENTAL RESEARCH 2022; 214:113942. [PMID: 35870505 DOI: 10.1016/j.envres.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND It is known that maternal thyroid dysfunction during early pregnancy can cause adverse pregnancy complications and birth outcomes. This study was designed to examine the association between ambient particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) and particulate matter with aerodynamic diameters ≤10 μm (PM10) exposure and maternal thyroid function during early pregnancy. METHODS This study was based on data from a birth cohort study of 921 pregnant women in China. We estimated associations between ambient PM2.5 and PM10 exposure during the first trimester of pregnancy (estimated with land-use regression models) and maternal thyroid hormone concentrations (free thyroxine (FT4), free tri-iodothyronine (FT3), and thyroid-stimulating hormone (TSH)) collected between weeks 10 and 17 of gestation using linear regression models adjusting for potential confounders. Ambient PM2.5 and PM10 concentrations were modeled per interquartile range (IQR) increment and as tertiles based on the distribution of the exposure levels. RESULTS An IQR increment (68 μg/m3) in PM2.5 exposure was associated with a significant decrease in maternal FT4 levels (β = -0.60, 95% CI: -1.07, -0.12); and a significant decrease in FT4/FT3 ratio (β = -0.13, 95% CI: -0.25, -0.02). Further analyses showed that, relative to the lowest tertile, women in both the middle and highest tertiles of PM2.5 had significantly lower concentrations of maternal FT4 and FT4/FT3 ratio. No significant associations were found between PM2.5 and FT3 or TSH levels. PM10 exposure was not significantly associated with maternal thyroid function. CONCLUSIONS Our study suggested that higher ambient PM2.5, not PM10, exposed during the first trimester of pregnancy were associated with a significant decrease in maternal serum FT4 concentrations and FT4/FT3 ratio. Studies in populations with different exposure levels are needed to replicate our study results.
Collapse
Affiliation(s)
- Xichi Zhang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert Makuch
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Tao Zheng
- Molecular Microbiology and Immunology, Warren Alpert Medical School of Brown University, USA
| | - Wei Xia
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Audrey Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jad Makuch
- Department of Ecosystem Science and Policy, University of Miami, Miami, FL, USA.Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO
| | - Zhou Zhu
- Molecular Microbiology and Immunology, Warren Alpert Medical School of Brown University, USA
| | - Cairong Zhu
- Huaxi School of Public Health, Chengdu, Sichuan, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, USA
| | - Shunqing Xu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Emojevwe V, Nwangwa EK, Naiho AO, Oyovwi MO, Igiehon O, Ogunwole E, Makinde-Taylor MS, Ayotomide OA, Akinola AO, Edesiri PT, Oghenetega BO, Ovuakporaye SI. Therapeutic efficacy of N-acetylcysteine and zinc sulphate against di-(2-ethylhexyl) phthalate-induced testicular oxido-nitrergic stress in male Wistar rat. Andrologia 2022; 54:e14508. [PMID: 35842931 DOI: 10.1111/and.14508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/21/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic efficacy of N-acetylcysteine (NAC) and zinc sulphate on di-(2-ethylhexyl) phthalate (DEHP)-induced testicular oxido-nitrergic stress in rats was investigated in 36 male Wistar rats (170 ± 10 g) randomly assigned into one of six groups (n = 6). Group 1 (control) received 2.5 ml/kg of distilled water for 42 days, while group 2 (vehicle) received 2.5 ml/kg of corn oil for 42 days. Groups 3,4,5, and 6 were administered DEHP (750 mg/kg/day) for 21 days, after which groups 4, 5, and 6 received zinc sulphate (0.5 mg/kg/day), NAC (100 mg/kg/day), and zinc sulphate (0.5 mg/kg/day) + NAC (100 mg/kg/day) for an additional 21 days respectively. After the experimental period, the animals were euthanized by light thiopental sodium, and their testes were carefully dissected out for histological and biochemical assays. The result shows a significant alteration in testicular levels of malondialdehyde, nitric oxide, antioxidant enzymes, total antioxidant capacity, sulphydryl levels, dehydrogenases and testicular architecture following the administration of DEHP. These effects were reversed by coadministration of NAC and zinc sulphate in the study. We therefore concluded that the combined effects of NAC and ZnSO4 effectively improved testicular antioxidant status and reduced testicular nitregic stress, thus improving testicular architecture and functions.
Collapse
Affiliation(s)
- Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo City, Nigeria
- Department of Physiology, Delta State University, Abraka, Nigeria
| | | | | | | | - Osarugue Igiehon
- Department of Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Eunice Ogunwole
- Department of Physiology, University of Medical Sciences, Ondo City, Nigeria
| | | | | | | | - Prince Tesi Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwash-Uku, Nigeria
| | | | | |
Collapse
|
6
|
Yang EJ, Choi BS, Yang YJ. Risk of Nonalcoholic Fatty Liver Disease Is Associated with Urinary Phthalate Metabolites Levels in Adults with Subclinical Hypothyroidism: Korean National Environmental Health Survey (KoNEHS) 2012-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063267. [PMID: 35328955 PMCID: PMC8949399 DOI: 10.3390/ijerph19063267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition of excess accumulation of fats in the liver. Thyroid dysfunction is commonly observed in adult populations with NAFLD. In subjects with thyroid dysfunction, phthalates, which are chemical compounds widely used to increase the flexibility of various plastic products, may increase the risk of NAFLD prevalence. Therefore, our study aimed to evaluate the relationship between the levels of urinary phthalate metabolites and the risk of NAFLD stratified by the levels of thyroid-stimulating hormone (TSH). Data (n = 2308) were obtained from the Korean National Environmental Health Survey II (2012−2014). Using the hepatic steatosis index, participants were classified into non-NAFLD (<30) and NAFLD (>36) groups. Participants with euthyroidism were defined as 0.45−4.5 mIU/L for serum TSH and normal thyroxine (T4) levels (n = 2125). Subclinical hypothyroidism (SCH) was defined as a higher TSH level (4.5−10 mIU/L) with normal total T4 levels in the serum (n = 183). A multivariate analysis was performed to assess the association of the urinary phthalate concentration with the risk of NAFLD after stratification based on the thyroid hormone levels. The levels of phthalate metabolites in urine were not significantly associated with NAFLD in adults with euthyroidism. However, a significant increased risk of NAFLD in those with SCH was observed in the fourth quartile of mono (2-ethyl-5-hydroxyhexyl) phthalate (odds ratio (OR) 13.59, 95% confidence interval (CI) 12.13−86.44), mono (2-ethyl-5-oxohexyl) phthalate (OR 8.55, 95% CI 1.20−60.53), mono-(2-ethyl-5-carboxypentyl) phthalate (OR 9.06, 95% CI 1.78−45.96), and mono-benzyl phthalate (OR 6.05, 95% CI 1.62−22.54) compared to those of the lowest quartile after being adjusted with covariates. In conclusion, the levels of phthalate metabolites in urine are positively associated with NAFLD in adults with SCH. More experimental studies are needed to clarify the risk of NAFLD caused by phthalate exposure in cases with poor thyroid function.
Collapse
Affiliation(s)
- Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Yun-Jung Yang
- Department of Convergence Science, College of Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea
- Correspondence: ; Tel.: +82-32-290-2795
| |
Collapse
|
7
|
Emojevwe V, Nwangwa EK, Naiho AO, Oyovwi MO, Ben-Azu B. Toxicological outcome of phthalate exposure on male fertility: Ameliorative impacts of the co-administration of N-acetylcysteine and zinc sulfate in rats. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reports have shown that humans are consistently exposed to environmental toxicants such as phthalate (PHT) during their daily activities. This results in reproductive dysfunction and infertility-related issues as already noted in human and experimental animals. We therefore designed this study to investigate fertility outcome in phthalate-exposed male rats treated with N-acetylcysteine (NAC) and zinc sulfate (ZnSO4) with the view of providing a therapeutic alternative to reproductive toxicity caused by phthalate. The research was done in two phases. In phase 1, thirty-five male Wistar rats were randomly assigned to one of five (n = 7) groups given the following treatments for 21 days: group A was given distilled water as a control, while groups B, C, D, and E were given phthalate (750 mg/kg/day). Animals in groups C to E were also given ZnSO4 (0.5 mg/kg/day), N-acetylcysteine (100 mg/kg/day), and ZnSO4 (0.5 mg/kg/day) + N-acetylcysteine (100 mg/kg/day) in addition to phthalate. In phase 2, animals from groups in phase 1 were mated with females for fecundity testing.
Results
The result shows alteration in testicular and epididymis weight and testis/epididymis ratio, semen parameters, sperm capacitation and acrosome reaction, sperm DNA, serum Zn and Mg, testicular mitochondria apoptosis mechanisms (TNF-α and BCL-2), and testicular Ca2+-ATPase as well as fecundity outcome in the phthalate-treated group. However, ZnSO4 and NAC successfully ameliorated the deleterious effects of phthalate on semen parameters, sperm capacitation and acrosome reaction, serum electrolyte and mitochondria apoptosis mechanisms, and testicular electrogenic Ca2+-ATPase in phthalate-induced male rats with a better outcome in the combined therapy. Pregnancy outcome and litter sizes were also higher in the combined therapy when also compared with the phthalate-treated groups.
Conclusion
According to the result, ZnSO4 and NAC increased fertility outcome in phthalate-treated male rats through enhancement of testicular BCL-2, serum electrolyte, testicular Ca2+ATPase pumps, and cytoprotection.
Collapse
|
8
|
Zhang X, Qi W, Xu Q, Li X, Zhou L, Ye L. Di(2-ethylhexyl) phthalate (DEHP) and thyroid: biological mechanisms of interference and possible clinical implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1634-1644. [PMID: 34677768 DOI: 10.1007/s11356-021-17027-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/10/2021] [Indexed: 05/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental endocrine disruptor. DEHP can be absorbed into the human body through the air, food, water, and skin. After entering the human body, DEHP is rapidly converted to mono(2-ethylhexyl) phthalate (MEHP) with greater toxicity than DEHP. An increasing number of studies indicates that DEHP or MEHP can damage the thyroid tissue and disrupt the function, but the mechanisms remain unclear. This article reviews the toxicity of DEHP on thyroid structures and functions and summarizes the potential mechanisms to provide evidence for preventing the thyroid-related diseases.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
9
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
10
|
Ji J, Hong F, Zhou Y, Liu T, Fan D, Zhang X, Lu Y, Jiang L, Wang X, Wang C. Molecular mechanisms associated with oxidative damage in the mouse testis induced by LaCl 3. ENVIRONMENTAL TOXICOLOGY 2021; 36:408-416. [PMID: 33098623 DOI: 10.1002/tox.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
China is the world's largest rare earth producer and exporter, previous studies have shown that rare earth elements can cause oxidative damage in animal testis. However, the molecular mechanisms underlying these observations have yet to be elucidated. In this paper, male mice were fed with different doses (10, 20, and 40 mg/kg BW) of LaCl3 for 90 consecutive days, regulatory role of nuclear factor erythroid-2 related factor 2 (Nrf-2)/antioxidant response element (ARE) pathway in testicular oxidative stress induced by LaCl3 were investigated. Analysis showed that LaCl3 exposure could lead to severe testicular pathological changes and apoptosis in spermatogenic cells, it up-regulated the peroxidation of lipids, proteins and DNA, and induced the excessive levels of reactive oxygen species (ROS) production in mouse testis, reduced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione S epoxide transferase (GST) as well as the glutathione (GSH) content. Furthermore, exposure to LaCl3 also downregulated the expression of Nrf2 and its target gene products, including heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase [quinine] 1(NQO1), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K), but upregulated the expression of Kelch-like ECH-related protein 1 (Keap1) in damaged mouse testes. Collectively, our data imply that the oxidative damage induced by LaCl3 in testis was related to inhibition of the Nrf-2/AREs pathway activation.
Collapse
Affiliation(s)
- Jianhui Ji
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Fashui Hong
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Tingwu Liu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Dongxue Fan
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xingxiang Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yutian Lu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Lingling Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xiaomei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Chen Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
11
|
Dong X, Wu W, Yao S, Li H, Li Z, Zhang L, Jiang J, Xu J, Zhang F. PM 2.5 disrupts thyroid hormone homeostasis through activation of the hypothalamic-pituitary-thyroid (HPT) axis and induction of hepatic transthyretin in female rats 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111720. [PMID: 33396051 DOI: 10.1016/j.ecoenv.2020.111720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5), a ubiquitous environmental pollutant, has been indicated to affect thyroid hormone (TH) homeostasis in women, but the detailed mechanism behind this effect remains unclear. The objective of this study was to evaluate the roles of the hypothalamic-pituitary-thyroid (HPT) axis and hepatic transthyretin in the thyroid-disrupting effects of PM2.5. Sprague Dawley rats were treated with PM2.5 (0, 15 and 30 mg/kg) by passive pulmonary inhalation for 49 days; and recovery experimental group rats were dosed with PM2.5 (30 mg/kg) for 35 days, and no treatment was done during the subsequent 14 days. PM2.5 was handled twice a day by passive pulmonary inhalation throughout the study. After treatment, pathological changes were analyzed by performing haemotoxylin and eosin staining, measuring levels of THs and urine iodine (UI) in serum, plasma, and urine samples using enzyme-linked immunoabsorbent assay, and expression of proteins in the hypothalamus, pituitary, thyroid, and liver tissues of rats were analyzed by immunohistochemistry and Western blotting. The levels of oxidative stress factors, such as reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and nuclear factor-kappa B (NF-κB) in female rats' plasma were also evaluated by ELISA. The results of these analyses revealed that PM2.5 treatment induced pathologic changes in rat thyroid and liver characterized by increased follicular cavity size and decreased amounts of follicular epithelial cells and fat vacuoles, respectively. Serum levels of triiodothyronine, thyroxine, and thyroid stimulating hormone were significantly decreased, plasma NF-κB level was increased and plasma redox state was unbalanced (enhanced ROS, MDA and Gpx levels; reduced SOD activities) in female rats treated with PM2.5 (P < 0.05). PM2.5 treatment suppressed the biosynthesis and biotransformation of THs by increasing sodium iodide symporter, thyroid transcription factor 1, thyroid transcription factor 2, and paired box 8 protein expression levels (P < 0.05). Additionally, thyroid stimulating hormone receptor and thyroid peroxidase levels were significantly decreased (P < 0.05). Both thyrotropin releasing hormone receptor and thyroid stimulating hormone beta levels were enhanced (P < 0.05). Moreover, transport of THs was inhibited due to reduced protein expression of hepatic transthyretin upon treatment with PM2.5. In summary, PM2.5 treatment could perturb TH homeostasis by affecting TH biosynthesis, biotransformation, and transport, affecting TH receptor levels, and inducing oxidative stress and inflammatory responses. Activation of the HPT axis and altered hepatic transthyretin levels therefore appear to play a crucial role in PM2.5-induced thyroid dysfunction.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Zhichun Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Jing Jiang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| |
Collapse
|
12
|
Ren S, Li Y, Li C. Effects of P-nitrophenol exposure on the testicular development and semen quality of roosters. Gen Comp Endocrinol 2021; 301:113656. [PMID: 33159910 DOI: 10.1016/j.ygcen.2020.113656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023]
Abstract
The widespread use of P-nitrophenol (PNP) as a raw material in pesticides, medicines and dyes has led to environmental pollution. PNP is a well-known endocrine disruptor in mammals and quails. This study investigated the effects of long-term PNP exposure on the testicular development and semen quality of roosters. Pubescent and postpubescent animals were given drinking water supplemented with (0 mg/L, 1 mg/L, 10 mg/L, or 100 mg/L) PNP for eight weeks or sixteen weeks. The relative testis weight, antioxidant index, serum hormone concentration, morphological changes, semen quality and expression of major steroidogenic genes were measured. The results showed that eight weeks of PNP exposure decreased CAT activity and increased H2O2 level in serum and testes in the 10 mg/L and 100 mg/L PNP-treated groups. Detached sperm cells were also found in the testicular tissues of the 100 mg/L PNP-treated group. After sixteen weeks of PNP exposure, daily weight gain, sperm motility, serum testosterone concentration and 3β1-hydroxysteroid dehydrogenase (HSD3β1) mRNA expression were decreased in the 100 mg/L PNP-treated group. Some vacuoles in the seminiferous epithelium in the testicular tissues were found in the 10 mg/L and 100 mg/L PNP-treated groups. In conclusion, as an endocrine disruptor, PNP exposure impaired antioxidant capacity, reduced testosterone synthesis, caused morphological changes in testes, and ultimately decreased semen quality in the roosters. The reproductive damage of PNP to roosters depended on the length of exposure time and the administered dose.
Collapse
Affiliation(s)
- Shanmao Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Lyden GR, Barrett ES, Sathyanarayana S, Bush NR, Swan SH, Nguyen RH. Pregnancy intention and phthalate metabolites among pregnant women in The Infant Development and Environment Study cohort. Paediatr Perinat Epidemiol 2020; 34:736-743. [PMID: 32249967 PMCID: PMC7541656 DOI: 10.1111/ppe.12674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preconception life style and health play a pivotal role in positively impacting the health of a pregnancy, and this includes the reduction of exposure to endocrine-disrupting chemicals such as phthalates. We have previously demonstrated that women planning a pregnancy with assisted reproductive technology (ART) have lower phthalate metabolite concentrations than their non-ART-using counterparts. OBJECTIVE To determine whether women who intended to become pregnant had lower phthalate metabolite concentrations than those who had an unintended pregnancy, or whether change in phthalate exposure across pregnancy differed between these two groups. METHODS A total of 721 women enrolled in The Infant Development and Environment Study (TIDES), a multicentre US prospective pregnancy cohort; 513 (71%) indicated their pregnancy was planned. Urine samples from first- and third-trimester visits were analysed for 10 specific-gravity-adjusted, natural-log-transformed phthalate metabolites. Simple and multivariable linear regression, adjusting for centre, race, age, income, marital status, and parity, were employed to determine whether phthalate metabolite concentrations differed by pregnancy intention. RESULTS In bivariate analyses, the geometric mean concentrations of all first-trimester and most third-trimester phthalates were higher in women with unplanned pregnancies. However, after covariate adjustment, only first-trimester monoisobutyl phthalate (MiBP) remained associated with pregnancy intention, and the association changed direction such that unplanned pregnancies had lower MiBP concentrations (ß -0.18, 95% CI -0.35, -0.02). CONCLUSIONS We did not find evidence of a difference in phthalate exposure between pregnancy planners and non-planners.
Collapse
Affiliation(s)
- Grace R. Lyden
- University of Minnesota School of Public Health, Division of Biostatistics, Minneapolis, MN, USA
| | - Emily S. Barrett
- Rutgers School of Public Health, Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Sheela Sathyanarayana
- University of Washington School of Public Health, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Nicole R. Bush
- University of California, San Francisco, Department of Psychiatry, Department of Pediatrics, San Francisco, CA, USA
| | - Shanna H. Swan
- Mount Sinai School of Medicine, Division of Preventive Medicine and Community Health, New York, NY, USA
| | - Ruby H.N. Nguyen
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA
| |
Collapse
|
14
|
Sicińska P, Kik K, Bukowska B. Human Erythrocytes Exposed to Phthalates and Their Metabolites Alter Antioxidant Enzyme Activity and Hemoglobin Oxidation. Int J Mol Sci 2020; 21:E4480. [PMID: 32599721 PMCID: PMC7350025 DOI: 10.3390/ijms21124480] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Phthalates used as plasticizers have become a part of human life because of their important role in various industries. Human exposure to these compounds is unavoidable, and therefore their mechanisms of toxicity should be investigated. Due to their structure and function, human erythrocytes are increasingly used as a cell model for testing the in vitro toxicity of various xenobiotics. Therefore, the purpose of our study was to assess the effect of selected phthalates on methemoglobin (metHb), reactive oxygen species (ROS) including hydroxyl radical levels, as well as the activity of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), in human erythrocytes. Erythrocytes were incubated with di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), and their metabolites, i.e., mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP), at concentrations ranging from 0.5 to 100 µg/mL for 6 or 24 h. This study shows that the analyzed phthalates disturbed the redox balance in human erythrocytes. DBP and BBP, at much lower concentrations than their metabolites, caused a statistically significant increase of metHb and ROS, including hydroxyl radical levels, and changed the activity of antioxidant enzymes. The studied phthalates disturbed the redox balance in human erythrocytes, which may contribute to the accelerated removal of these cells from the circulation.
Collapse
Affiliation(s)
- Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Łódź, Poland; (K.K.); (B.B.)
| | | | | |
Collapse
|
15
|
Liu C, Deng YL, Zheng TZ, Yang P, Jiang XQ, Liu EN, Miao XP, Wang LQ, Jiang M, Zeng Q. Urinary biomarkers of phthalates exposure and risks of thyroid cancer and benign nodule. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121189. [PMID: 31541958 DOI: 10.1016/j.jhazmat.2019.121189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/04/2019] [Accepted: 09/08/2019] [Indexed: 05/27/2023]
Abstract
Phthalates have been reported to affect the function and growth of thyroid. However, there is little data on the effect of phthalates on thyroid oncogenesis. Here we explored the associations between phthalates exposure and the risks of thyroid cancer and benign nodule. We sex-matched 144 thyroid cancer, 138 benign nodule patients and 144 healthy adults from Wuhan, China. Eight phthalate metabolites in spot urine samples were quantified using high-performance liquid chromatography and tandem mass spectrometry. The associations of creatinine-corrected urinary phthalate metabolites with the risks of thyroid cancer and benign nodule were assessed using multivariable logistic regression models. We found that urinary monomethyl phthalate (MMP), mono(2-ethyl-5hydroxyhexyl) phthalate (MEHHP) and mono(2-ethylhexyl) phthalate (MEHP) associated with increased risks of thyroid cancer and nodule, with adjusted odds ratios (ORs) ranging from 1.74 to 4.78 comparing the extreme tertiles, and urinary monobutyl phthalate (MBP) was associated with decreased risks of thyroid cancer and benign nodule (all P for trends < 0.05). Male-specific positive associations of urinary monoethyl phthalate (MEP) with thyroid cancer and nodule as well as urinary mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) with thyroid cancer were also observed. Our results suggest that exposure to certain phthalates may contribute to increased risks of thyroid cancer and benign nodule.
Collapse
Affiliation(s)
- Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Qing Jiang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er-Nan Liu
- Wuhan Center for Disease Prevention and Control, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
16
|
Muratori M, De Geyter C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract Res Clin Endocrinol Metab 2019; 33:117-126. [PMID: 30420311 DOI: 10.1016/j.beem.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies report an increase of pathologies of male reproductive tracts and suggest a link between this trend and the increased exposure of men to endocrine disruptors (EDs). The mechanisms by which EDs impact male fertility are far to be elucidated although DNA, chromatin and epigenome of spermatozoa appear to be relevant targets for these molecules. Indeed, many studies report associations between increased levels of sperm DNA fragmentation (sDF) or aberrant chromatin condensation or epigenetic modifications and poor semen quality and/or infertile phenotype. In this scenario, therapies able to reduce sperm damage to DNA, chromatin and epigenome are sought. Currently, antioxidants and FSH administration is proposed for treating high levels of sDF, but whether or not such therapies are really effective is still debated. Further studies are necessary to understand the link between endocrine disruptor exposure and damage to sperm function and/or structure and thus to define effective therapeutic strategies.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Experimental, Clinical and Biomedical Sciences, Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of Florence, Viale Pieraccini, 6, I-50139, Firenze, Italy.
| | - Christian De Geyter
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, CH-4031, Basel, Switzerland.
| |
Collapse
|
17
|
Kassab RB, Lokman MS, Essawy EA. Neurochemical alterations following the exposure to di-n-butyl phthalate in rats. Metab Brain Dis 2019; 34:235-244. [PMID: 30446882 DOI: 10.1007/s11011-018-0341-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Due to its ability to cross blood brain barrier and placenta, dibutyl phthalate (di-n-butyl phthalate, DBP) is expected to cause severe side effects to the central nervous system of animals and humans. A little data is available about the potential DBP neurotoxicity; therefore, this work was designed to investigate the brain tissue injury induced by DBP exposure. Forty Wister albino rats were allocated randomly into 4 groups (10 rats each). Group 1 served as control and the rats administered with physiological saline (0.9% NaCl) orally for 12 weeks. Groups 2, 3 and 4 were orally treated with DPB (100, 250 and 500 mg/kg) respectively for 12 weeks. DBP-intoxicated rats showed a disturbance in the oxidative status in cerebral cortex, striatum and brainstem, as represented by the elevated oxidants [malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2-deoxyguanosine (8-OHdG)] and the decreased antioxidant molecules [reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. DBP also enhanced a pro-inflammatory state through increasing the release of tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1β). The increase of these cytokines was associated with the increase of pro-apoptotic proteins [Bcl-2 associated X protein (Bax) and caspase-3] and the decrease of the anti-apoptotic protein, B cell lymphoma 2 (Bcl-2). In addition, the levels of norepinephrine (NE), dopamine (DA) and acetylcholine esterase (AChE) activity were decreased. This was accompanied by the alterations in the major excitatory and inhibitory amino acids neurotransmitters levels. The present findings indicated that DBP could exert its neuronal damage through oxidative stress, DNA oxidation, neuroinflammation, activation of apoptotic proteins and altering the monoaminergic, cholinergic and amino acids transmission.
Collapse
Affiliation(s)
- Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Maha S Lokman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ehab A Essawy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
18
|
Soubry A. POHaD: why we should study future fathers. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy007. [PMID: 29732171 PMCID: PMC5920283 DOI: 10.1093/eep/dvy007] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 05/23/2023]
Abstract
The growing field of 'Developmental Origin of Health and Disease' (DOHaD) generally reflects environmental influences from mother to child. The importance of maternal lifestyle, diet and other environmental exposures before and during gestation period is well recognized. However, few epidemiological designs explore potential influences from the paternal environment on offspring health. This is surprising given that numerous animal models have provided evidence that the paternal environment plays a role in a non-genetic inheritance of pre-conceptional exposures through the male germ line. Recent findings in humans suggest that the epigenome of sperm cells can indeed be affected by paternal exposures. Defects in epigenetic sperm mechanisms may result in persistent modifications, affecting male fertility or offspring health status. We addressed this issue at the LATSIS Symposium 'Transgenerational Epigenetic Inheritance: Impact for Biology and Society', in Zürich, 28-30 August 2017, and here provide important arguments why environmental and lifestyle-related exposures in young men should be studied. The Paternal Origins of Health and Disease (POHaD) paradigm was introduced to stress the need for more research on the role of the father in the transmission of acquired environmental messages from his environment to his offspring. A better understanding of pre-conceptional origins of disease through the paternal exposome will be informative to the field of transgenerational epigenetics and will ultimately help instruct and guide public health policies in the future.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven – University, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Valenzuela-Leon P, Dobrinski I. Exposure to phthalate esters induces an autophagic response in male germ cells. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx010. [PMID: 29492312 PMCID: PMC5804550 DOI: 10.1093/eep/dvx010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 05/22/2023]
Abstract
Phthalate esters are plasticizers that impart flexibility to polvinylchloride plastics. As they are not covalently bound, they can leach from a wide range of products, including food containers, medical devices, clothing, and toys, leading to widespread environmental exposure. Phthalate toxicity has been linked to male infertility by disrupting testosterone production and testis development. Phthalates also impair proliferation and viability of spermatogonial stem cells (SSC), the role of which is to support lifelong spermatogenesis. To elucidate cellular mechanisms in spermatogonia affected by long-term phthalate exposure, we grafted primate testis tissue into mice. Grafts treated with di-n-butyl phthalate showed an increase in autophagy compared to controls. Short term in vitro exposure of porcine germ cells to mono(2-ethylhexyl) phthalate, also resulted in an increase in autophagy. Viability was lower in cells exposed to phthalates, but treatment with rapamycin to induce autophagy significantly increased viability. The data suggests autophagy is triggered in spermatogonia as a response to a toxic insult, which may constitute a survival mechanism in spermatogonia.
Collapse
Affiliation(s)
- Paula Valenzuela-Leon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence address. Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, 404 HMRB, Calgary, AB T2N 4N1, Canada. Tel: 403 210 6523; E-mail
| |
Collapse
|
20
|
Gao S, Li C, Chen L, Zhou X. Actions and mechanisms of reactive oxygen species and antioxidative system in semen. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|
22
|
Tiwari D, Vanage G. Bisphenol A Induces Oxidative Stress in Bone Marrow Cells, Lymphocytes, and Reproductive Organs of Holtzman Rats. Int J Toxicol 2017; 36:142-152. [DOI: 10.1177/1091581817691224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is an estrogenic chemical used in the production of polycarbonate plastics and epoxy resins. Our earlier studies have demonstrated that BPA is a potent reproductive and genotoxic agent and affects the normal physiological functions. The objective of this study was to evaluate whether exposure to BPA induces oxidative stress. The male Holtzman rats were orally gavaged with BPA (0.01 mg and 5.0 mg/kg/bw) over the period of 6 days. Animals were euthanized by cervical dislocation at the end of the treatments; bone marrow cells and blood lymphocytes were aspirated; testis and epididymis were collected, immediately frozen in liquid nitrogen, and stored at −80°C. These samples were utilized for the determination of lipid peroxidation and various antioxidant enzymes such as superoxide dismutase, catalase, and nonenzymatic reduced glutathione. The results demonstrated that BPA caused an increase in lipid peroxidation and a decrease in activity of various enzymatic and nonenzymatic antioxidants in bone marrow cells, blood lymphocytes, and testicular and epididymal tissues. The findings of the current study suggest that BPA exposure induced oxidative stress, which could be one of the possible mechanisms causing reproductive and genetic toxicity.
Collapse
Affiliation(s)
- Dinesh Tiwari
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), J.M. Street, Parel, Mumbai, India
| | - Geeta Vanage
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), J.M. Street, Parel, Mumbai, India
| |
Collapse
|
23
|
Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes. Sci Rep 2017; 7:40153. [PMID: 28065941 PMCID: PMC5220292 DOI: 10.1038/srep40153] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP.
Collapse
|
24
|
Kai M, Miyoshi M, Fujiwara M, Nishiyama Y, Inoue T, Maeshige N, Hamada Y, Usami M. A lard-rich high-fat diet increases hepatic peroxisome proliferator-activated receptors in endotoxemic rats. J Surg Res 2016; 212:22-32. [PMID: 28550910 DOI: 10.1016/j.jss.2016.11.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/02/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diets high in saturated fatty acids activate chronic inflammation. We previously reported that, in even acute inflammation caused by lipopolysaccharide (LPS), liver injury was exacerbated in rats fed a lard-rich diet. Peroxisome proliferator-activated receptors (PPARs) are related to inflammation and are also key regulators of lipid metabolism. In this study, we examined effects of high-fat diet on liver injury and hepatic lipid metabolism during endotoxemia, measuring hepatic PPARs and other markers. MATERIALS AND METHODS Male Wistar rats were fed a high-fat diet (HFD, 60 kcal% fat) or control diet (CD, 10 kcal% fat) for 4 or 12 wk, injected with LPS and sacrificed at 0, 1.5, or 6 h. Analyses included plasma aspartate transaminase (AST) and alanine transaminase (ALT) levels, messenger RNA (mRNA) and protein levels of hepatic PPARα and PPARγ, and mRNA levels of enzymes related to fatty acid oxidation and synthesis. RESULTS Endotoxemic rats on HFD for 12 wk, but not 4 wk, had higher mRNA and protein levels for hepatic PPARs, than did those on CD (P < 0.01-0.05). Similarly, these rats had increased mRNA expression of hepatic fatty acid oxidation- and synthesis-related enzymes (P < 0.01-0.05). Rats injected with LPS had more severe liver injury, indicated by plasma AST/ALT, if on the HFD for 12 wk, compared with for 4 wk. CONCLUSIONS Consumption of a lard-rich diet for 12 wk worsened liver injury and increased hepatic PPARα and PPARγ expression in endotoxemic rats.
Collapse
Affiliation(s)
- Motoki Kai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mayu Fujiwara
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuya Nishiyama
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Taketo Inoue
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yasuhiro Hamada
- Department of Therapeutic Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Nutrition, Kobe University Hospital and Faculty of Health Science, Kobe, Japan.
| |
Collapse
|
25
|
Mathieu-Denoncourt J, Martyniuk CJ, Loughery JR, Yargeau V, de Solla SR, Langlois VS. Lethal and sublethal effects of phthalate diesters in Silurana tropicalis larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2511-2522. [PMID: 26924002 DOI: 10.1002/etc.3413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/24/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
Phthalates are compounds used in polymers to increase their flexibility and are now ubiquitous in the environment as a result of widespread use. Because few studies have focused on the adverse effects of these chemicals in aquatic species, the present study aimed to determine the effects of phthalate diesters in amphibians. Western clawed frog (Silurana tropicalis) tadpoles were acutely exposed to water spiked with monomethyl phthalate (MMP; 1.3-1595.5 mg/L), dimethyl phthalate (DMP; 0.03-924.0 mg/L), or dicyclohexyl phthalate (DCHP; 0.3-99.3 mg/L). Because few studies have addressed the toxicity of these specific phthalates in most organisms, the present study used higher concentrations of these chemicals to determine their toxicity pathways in amphibians and at the same time investigate a suite of genes known to be altered by the well-studied phthalates. Both DMP and DCHP increased larval mortality (9.1-924.0 mg/L DMP and 4.1-99.3 mg/L DCHP), increased frequency of malformations in tadpoles (0.1-34.1 mg/L DMP and 4.1-19.0 mg/L DCHP), and up-regulated cellular stress-related messenger-RNA (mRNA) levels (4.1 mg/L DCHP). To characterize the molecular toxicity pathway of these phthalates in tadpoles, transcriptome analysis was conducted using a custom microarray. Parametric analysis of gene set enrichment revealed important changes in the expression of genes related to drug metabolism and transport, liver metabolism, xenobiotic clearance, and xenobiotic metabolism after DMP and DCHP treatments, although these responses were less pronounced with MMP (the metabolite of DMP). The present study is one of the few studies that demonstrated complementarity between gene expression analysis and organismal effects. Environ Toxicol Chem 2016;35:2511-2522. © 2016 SETAC.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of New Brunswick and Canadian Rivers Institute, New Brunswick, Canada
| | - Jennifer R Loughery
- Department of Biology, University of New Brunswick and Canadian Rivers Institute, New Brunswick, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Quebec, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
26
|
Liu N, Wang Y, Yang Q, Lv Y, Jin X, Giesy JP, Johnson AC. Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:482-488. [PMID: 26970873 DOI: 10.1016/j.envpol.2016.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Diethylhexyl phthalate (DEHP) is considered to be an endocrine disruptor, which unlike other chemicals that have either non-specific (e.g., narcotics) or more generalized reactive modes of action, affect the Hypothalamic-pituitary-gonadal (HPG) axis and tend to have specific interactions with particular molecular targets within biochemical pathways. Responding to this challenge, a novel method for deriving predicted no-effect concentration (PNEC) and probabilistic ecological risk assessment (PERAs) for DEHP based on long-term exposure to potentially sensitive species with appropriate apical endpoints was development for protection of Chinese surface waters. PNECs based on potencies to cause lesions in reproductive tissues of fishes, which ranged from 0.04 to 0.20 μg DEHP L(-1), were significantly less than those derived based on other endpoints or other taxa, such as invertebrates. An assessment of risks posed by DEHP to aquatic organisms in surface waters of China showed that 88.17% and 78.85% of surface waters in China were predicted to pose risks to reproductive fitness of fishes with thresholds of protection for aquatic organisms based on 5% (HC5) and 10% (HC10), respectively. Assessment of risks of effects based on effects mediated by the HPG-axis should consider effects on chronic, non-lethal endpoints for specific taxa, especially for reproductive fitness of fishes.
Collapse
Affiliation(s)
- Na Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yeyao Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; China National Environmental Monitoring Center, Beijing, 100012, China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yibing Lv
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing, 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | | |
Collapse
|
27
|
Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.4.231] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Kaur R, Gupta V, Christopher A, Bansal P. Potential pathways of pesticide action on erectile function – A contributory factor in male infertility. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Qu R, Feng M, Sun P, Wang Z. A comparative study on antioxidant status combined with integrated biomarker response in Carassius auratus fish exposed to nine phthalates. ENVIRONMENTAL TOXICOLOGY 2015; 30:1125-1134. [PMID: 24616073 DOI: 10.1002/tox.21985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 02/23/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Laboratory experiments were performed to determine the antioxidant responses to nine phthalates (PAEs) in the liver of the goldfish Carassius auratus. The fish were injected with 10 mg/kg body weight of each PAE for 1 day and 4, 8, and 15 days. The potential biotoxicity of the PAEs were examined using the antioxidase and lipid peroxide indices. We determined that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels displayed different trends following prolonged treatment, suggesting that metabolism generated either less toxic or more active substances. Based on the intensity of enzymes inhibition, MDA content, and the calculated integrated biomarker response (IBR), the toxicity order was determined as follows: dibutyl phthalate (DBP) > diethyl phthalate (DEP) > diisodecyl phthalate (DIDP) > diphenyl phthalate (DPP) > butyl benzyl phthalate (BBP) > diallyl phthalate (DAP) > dicyclohexyl phthalate (DCHP) > dimethyl phthalate (DMP) > di(2-ethylhexyl) phthalate (DEHP). In particular, DBP, which exhibited significant inhibition of enzyme activity and the greatest decrease in MDA content, may be a highly toxic contaminant. Furthermore, our results suggest that the IBR may be a general marker of pollution.
Collapse
Affiliation(s)
- Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
30
|
Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 2015; 219:74-88. [PMID: 25448254 DOI: 10.1016/j.ygcen.2014.11.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
31
|
Liu C, Zhao L, Wei L, Li L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12711-9. [PMID: 25913319 DOI: 10.1007/s11356-015-4567-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/19/2015] [Indexed: 05/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.
Collapse
Affiliation(s)
- Changjiang Liu
- Key Lab of Birth Defects and Reproductive Health of National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, 18 Honghuang Road, Chongqing, 400020, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Asghari MH, Saeidnia S, Abdollahi M. A Review on the Biochemical and Molecular Mechanisms of Phthalate-Induced Toxicity in Various Organs with a Focus on the Reproductive System. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.95.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Asker ME, Hassan WA, El-Kashlan AM. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats. Andrologia 2014; 47:644-54. [PMID: 25220112 DOI: 10.1111/and.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/06/2023] Open
Abstract
The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress.
Collapse
Affiliation(s)
- M E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - W A Hassan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| | - A M El-Kashlan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
34
|
Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S, Csizmadia E, Degauque N, Kim BS, Koulmanda M, Kuchroo VK, Strom TB. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Invest 2014; 124:3443-54. [PMID: 24983317 DOI: 10.1172/jci73527] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/22/2014] [Indexed: 01/03/2023] Open
Abstract
Macrophages characterized as M2 and M2-like regulate immune responses associated with immune suppression and healing; however, the relationship of this macrophage subset to CD169+ tissue-resident macrophages and their contribution to shaping alloimmune responses is unknown. Here we identified a population of M2-like tissue-resident macrophages that express high levels of the phosphatidylserine receptor TIM-4 and CD169 (TIM-4hiCD169+). Labeling and tracking of TIM-4hiCD169+ macrophages in mice revealed that this population is a major subset of tissue-resident macrophages, homes to draining LNs following oxidative stress, exhibits an immunoregulatory and hypostimulatory phenotype that is maintained after migration to secondary lymphoid organs, favors preferential induction of antigen-stimulated Tregs, and is highly susceptible to apoptosis. Moreover, CD169+ tissue-resident macrophages were resistant to oxidative stress-induced apoptosis in mice lacking TIM-4. Compared with heart allografts from WT mice, Tim4-/- heart allografts survived much longer and were more easily tolerized by non-immunosuppressed recipients. Furthermore, Tim4-/- allograft survival was associated with the infiltration of Tregs into the graft. Together, our data provide evidence that M2-like TIM-4hiCD169+ tissue-resident macrophages are immunoregulatory and promote engraftment of cardiac allografts, but their influence is diminished by TIM-4-dependent programmed cell death.
Collapse
|
35
|
Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 2014; 36:359-71. [PMID: 24431278 PMCID: PMC4047566 DOI: 10.1002/bies.201300113] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
36
|
Ourique GM, Finamor IA, Saccol EMH, Riffel APK, Pês TS, Gutierrez K, Gonçalves PBD, Baldisserotto B, Pavanato MA, Barreto KP. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. Reprod Toxicol 2013; 37:31-9. [PMID: 23391542 DOI: 10.1016/j.reprotox.2013.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
Abstract
Hyperthyroidism may lead to a loss of sperm motility and an increase in oxidative stress (OS) in testes and may cause male reproductive disorders. Thus, the use of compounds with antioxidant properties may be a strategy for preventing these disorders. The effect of resveratrol (RSV) on sperm motility and on variables of the antioxidant status in the testes of rats with triiodothyronine-induced hyperthyroidism (100μg/kg) was investigated. Hyperthyroid rats presented lower sperm motility, higher levels of lipid hydroperoxides and thiobarbituric reactive substances, lower catalase and glutathione peroxidase activities and higher glutathione-S-transferase activity in their testes than control animals. RSV treatment (1mg/kg and 10mg/kg) was able to prevent these effects in the hyperthyroid rats and had no effect in the control animals. In conclusion, RSV might be a strategy for therapeutic intervention to preserve sperm motility and to prevent OS in testes, preserving testicular function in those with hyperthyroidism.
Collapse
Affiliation(s)
- Giovana M Ourique
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lu Y, Zhang P, Li C, Su X, Jin C, Li Y, Xu Y, Li T. Characterisation of immune-related gene expression in clam (Venerupis philippinarum) under exposure to di(2-ethylhexyl) phthalate. FISH & SHELLFISH IMMUNOLOGY 2013; 34:142-146. [PMID: 23089525 DOI: 10.1016/j.fsi.2012.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) mediates the immune system mainly by triggering the production of reactive oxygen species (ROS) and nitric oxide (NO) in higher animals. In the present study, spatial variation in the expression of immune-related genes in clam (Venerupis philippinarum) under acute short-term DEHP treatment was assessed by qPCR. The expression of six genes including glutamine synthetase (GS), IkB (IK), transcription factor activator protein-1 (AP-1), cyclophilin A-1 (CypA-1), heat shock protein 90 (HSP90) and superoxide dismutase (SOD) was dose-dependent. A negative correlation between expression and DEHP treatment was observed for big defensin (BD), glutathione S-transferase (GST), and thioredoxin peroxidase (TP). Surprisingly, lysozyme (LYZ) exhibited two distinct expression patterns at two DEHP doses. Significant differences between the experimental and control groups were observed for all tested genes at the various time points. Overall, our results revealed that DEHP mediates immune responses in clams by various means, and certain genes are promising candidate for biomarkers in DEHP monitoring.
Collapse
Affiliation(s)
- Yali Lu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pringle DR, Yin Z, Lee AA, Manchanda PK, Yu L, Parlow AF, Jarjoura D, La Perle KMD, Kirschner LS. Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocr Relat Cancer 2012; 19:435-46. [PMID: 22514108 PMCID: PMC3667702 DOI: 10.1530/erc-11-0306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy in the population, and the incidence of this cancer is increasing at a rapid rate. Although genetic analysis of papillary thyroid cancer (PTC) has identified mutations in a large percentage of patients, the genetic basis of follicular thyroid cancer (FTC) is less certain. Thyroid cancer, including both PTC and FTC, has been observed in patients with the inherited tumor predisposition Carney complex, caused by mutations in PRKAR1A. In order to investigate the role of loss of PRKAR1A in thyroid cancer, we generated a tissue-specific knockout of Prkar1a in the thyroid. We report that the resulting mice are hyperthyroid and developed follicular thyroid neoplasms by 1 year of age, including FTC in over 40% of animals. These thyroid tumors showed a signature of pathway activation different from that observed in other models of thyroid cancer. In vitro cultures of the tumor cells indicated that Prkar1a-null thyrocytes exhibited growth factor independence and suggested possible new therapeutic targets. Overall, this work represents the first report of a genetic mutation known to cause human FTC that exhibits a similar phenotype when modeled in the mouse. In addition to our knowledge of the mechanisms of human follicular thyroid tumorigenesis, this model is highly reproducible and may provide a viable mechanism for the further clinical development of therapies aimed at FTC.
Collapse
Affiliation(s)
- Daphne R. Pringle
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Zhirong Yin
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Audrey A. Lee
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Parmeet K. Manchanda
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210
| | - Alfred F. Parlow
- National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, California 90509
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210
| | - Krista M. D. La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Lawrence S. Kirschner
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
39
|
Ihsan A, Wang X, Liu Z, Wang Y, Huang X, Liu Y, Yu H, Zhang H, Li T, Yang C, Yuan Z. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 2011; 252:281-8. [DOI: 10.1016/j.taap.2011.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 01/28/2023]
|
40
|
Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:15-24. [PMID: 19794904 PMCID: PMC2715191 DOI: 10.4161/oxim.1.1.6843] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- R John Aitken
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.
| | | |
Collapse
|
41
|
Kang JC, Jee JH, Koo JG, Keum YH, Jo SG, Park KH. Anti-oxidative status and hepatic enzymes following acute administration of diethyl phthalate in olive flounder Paralichthys olivaceus, a marine culture fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1449-1455. [PMID: 20674977 DOI: 10.1016/j.ecoenv.2010.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 07/06/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
Although diethyl phthalate (DEP) is one of the most frequently used phthalates in solvents and fixatives for numerous industrial products, almost no research has been done on its biochemical toxicity in aquatic animals. Olive flounder (Paralichthys olivaceus), an important culture fish in far eastern Asian countries, were treated with intraperitoneal DEP at 0, 100, 300 or 900 mg/kg for three consecutive days and biochemical effects were assessed in the liver, kidney and serum 24 h after the final dosing. Measured parameters were mostly restricted to oxidative status and toxicity of the organs. In the hepatic tissue, there were significant increases in lipid peroxide (LPO) at 100mg/kg and above. Other hepatic parameters, which were examined, changed only after 900 mg/kg: reduced glutathione content (GSH), glutathione reductase activity (GR), glutathione peroxidase (GPx) activity increased; catalase (CAT) activity decreased. DEP also induced elevation in LPO levels at above 100 mg/kg in renal tissues; however, there was only a decrease in GR and glutathione S-transferase (GST) activities with DEP 900 mg/kg in contrast to the liver. Enzyme activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in hepatic tissues decreased in a dose-dependent manner in response to DEP at above 300 mg/kg. DEP at 300-900 mg/kg, although not uniform among parameters, caused increases in serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), AST, ALT activities and osmolality value, suggesting that DEP at these doses induced hepatic cell damage. The results indicate that 100-900 mg/kg DEP induced oxidative stress and the fish seemed to activate compensatory anti-oxidant systems to cope with the imposed substance on the liver. Such compensatory activation was not evident in the kidney. Overall, DEP was only weakly toxic to olive flounder in terms of oxidative and hepatic damage.
Collapse
Affiliation(s)
- Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Prasanth GK, Divya L, Sadasivan C. Effects of mono and di(n-butyl) phthalate on superoxide dismutase. Toxicology 2009; 262:38-42. [DOI: 10.1016/j.tox.2009.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 11/16/2022]
|
43
|
Lee YJ, Lee E, Kim TH, Choi JS, Lee J, Jung KK, Kwack SJ, Kim KB, Kang TS, Han SY, Lee BM, Kim HS. Effects of Di(2-ethylhexyl) Phthalate on Regulation of Steroidogenesis or Spermatogenesis in Testes of Sprague-Dawley Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Ena Lee
- College of Pharmacy, Pusan National University
| | | | | | - Jaewon Lee
- College of Pharmacy, Pusan National University
| | - Ki Kyung Jung
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Seung Jun Kwack
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Kyu Bong Kim
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Tae Seok Kang
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Soon Young Han
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Byung Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University
| | | |
Collapse
|
44
|
Antioxidant systems and oxidative stress in the testes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:154-71. [PMID: 19856167 DOI: 10.1007/978-0-387-09597-4_9] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Abstract
Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies own natural antioxidant defenses, resulting in cellular damage. Oxidative stress is a common pathology seen in approximately half of all infertile men. ROS, defined as including oxygen ions, free radicals and peroxides are generated by sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm DNA, resulting in the passage of defective paternal DNA on to the conceptus. This review will provide an overview of oxidative biochemistry related to sperm health and will identify which men are most at risk of oxidative infertility. Finally, the review will outline methods available for diagnosing oxidative stress and the various treatments available.
Collapse
Affiliation(s)
- Kelton Tremellen
- Repromed, 180 Fullarton Road, Dulwich, 5065 Adelaide, South Australia, Australia.
| |
Collapse
|