1
|
Namoju R, Chilaka KN. Protective effect of alpha‑lipoic acid against in utero cytarabine exposure-induced hepatotoxicity in rat female neonates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6577-6589. [PMID: 38459988 DOI: 10.1007/s00210-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Cytarabine, an anti-metabolite drug, remains the mainstay of treatment for hematological malignancies. It causes various toxic effects including teratogenicity. Alpha lipoic acid (ALA) is a natural antioxidant reported to offer protection against hepatotoxicity induced by various pathological conditions, drugs, or chemicals. We investigated the protective effect of ALA against prenatal cytarabine exposure-induced hepatotoxicity in rat female neonates. A total of 30 dams were randomly assigned to five groups and received normal saline, ALA 200 mg/kg, cytarabine 12.5 mg/kg, cytarabine 25 mg/kg, and cytarabine 25 mg/kg + ALA 200 mg/kg, respectively, from gestational day (GD)8 to GD21. Cytarabine and ALA were administered via intraperitoneal and oral (gavage) routes, respectively. On postnatal day (PND)1, all the live female neonates (pups) were collected and weighed. The blood and liver from pups were carefully collected and used for histopathological, and biochemical evaluations. A significant and dose-dependent decrease in maternal food intake and weight gain was observed in the pregnant rats (dams) of the cytarabine groups as compared to the dams of the control group. The pups exposed to cytarabine showed a significant and dose-dependent (a) decrease in body weight, liver weight, hepatosomatic index, catalase, superoxide dismutase, glutathione, glutathione peroxidase, serum albumin levels and (b) increase in malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, AST/ALT ratio, and histopathological anomalies. Maternal co-administration of ALA ameliorated these biochemical changes and histopathological abnormalities by combating oxidative stress. Future studies are warranted to explore the molecular mechanisms involved in the ALA's protective effects against prenatal cytarabine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| | - Kavitha N Chilaka
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
2
|
Ye N, Lv Z, Dai H, Huang Z, Shi F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology 2020; 159:20-27. [PMID: 33113440 DOI: 10.1016/j.theriogenology.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the present study was to investigate the effects of dietary alpha-lipoic acid (ALA) supplementation on the reproductive performance of aged breeder roosters. Sixteen 50-wk-old ROSS 308 breeder roosters were randomly allocated to two groups: roosters received a basal diet (CON), or a basal diet supplemented with 300 mg/kg of ALA (ALA). The results indicated that dietary ALA supplementation significantly increased sperm concentration, motility, viability, and membrane functional integrity. ALA also dramatically increased seminiferous tubule epithelial height (SEH) and testis scores. The ALA group had a higher serum concentration of testosterone than the CON group. ALA supplementation remarkably increased total antioxidant capacity (T-AOC), the enzyme activities of glutathione peroxidase (GPx), and catalase (CAT) in the testes; following a decrease in malondialdehyde (MDA) levels. In addition, we noted significant upregulation of Nrf2 mRNA and protein expression of and mRNA expression of its Downstream Genes (GPx1, NQO1, and GCLC), as well as significant downregulation of Keap1 mRNA expression in testicular tissue of aged roosters with ALA supplementation. The protein expression of Caspase 3 was downregulated and the protein expression of proliferating cell nuclear antigen (PCNA) was upregulated by ALA supplementation. The mRNA expression of spermatogenesis-related genes (ER1, AKT1, and Cav1) were markedly augmented in the ALA group compared with the CON group. In conclusion, dietary ALA supplementation enhanced the testicular antioxidant capacity through the Nrf2-signaling pathway, exerted anti-apoptotic effects, and improved the reproductive performance of aged roosters.
Collapse
Affiliation(s)
- Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Leitch AC, Abdelghany TM, Probert PM, Dunn MP, Meyer SK, Palmer JM, Cooke MP, Blake LI, Morse K, Rosenmai AK, Oskarsson A, Bates L, Figueiredo RS, Ibrahim I, Wilson C, Abdelkader NF, Jones DE, Blain PG, Wright MC. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food Chem Toxicol 2020; 136:111069. [PMID: 31883992 PMCID: PMC6996134 DOI: 10.1016/j.fct.2019.111069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Ionic liquids are a diverse range of charged chemicals with low volatility and often liquids at ambient temperatures. This characteristic has in part lead to them being considered environmentally-friendly replacements for existing volatile solvents. However, methylimidazolium ionic liquids are slow to break down in the environment and a recent study at Newcastle detected 1 octyl 3 methylimidazolium (M8OI) - an 8 carbon variant methylimidazolium ionic liquid - in soils in close proximity to a landfill site. The current M8OI toxicity database in cultured mammalian cells, in experimental animal studies and in model indicators of environmental impact are reviewed. Selected analytical data from the Newcastle study suggest the soils in close proximity to the landfill site, an urban soil lacking overt contamination, had variable levels of M8OI. The potential for M8OI - or a structurally related ionic liquid - to trigger primary biliary cholangitis (PBC), an autoimmune liver disease thought to be triggered by an unknown agent(s) in the environment, is reviewed.
Collapse
Affiliation(s)
- Alistair C Leitch
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Philip M Probert
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Michael P Dunn
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Stephanie K Meyer
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Jeremy M Palmer
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Martin P Cooke
- School of Civil Engineering and Geosciences, Drummond Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Lynsay I Blake
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Katie Morse
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Anna K Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucy Bates
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | | | - Ibrahim Ibrahim
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - Colin Wilson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - David E Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Peter G Blain
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom.
| |
Collapse
|