1
|
Wang H, Du X, Liu W, Zhang C, Li Y, Hou J, Yu Y, Li G, Wang Q. Combination of betulinic acid and EGFR-TKIs exerts synergistic anti-tumor effects against wild-type EGFR NSCLC by inducing autophagy-related cell death via EGFR signaling pathway. Respir Res 2024; 25:215. [PMID: 38764025 PMCID: PMC11103851 DOI: 10.1186/s12931-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Han Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohui Du
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Congcong Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jingwen Hou
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yi Yu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guiru Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Erdogan T, Oguz Erdogan F. DFT, molecular docking and molecular dynamics simulation studies on some recent natural products revealing their EGFR tyrosine kinase inhibition potential. J Biomol Struct Dyn 2024; 42:2942-2956. [PMID: 37144731 DOI: 10.1080/07391102.2023.2209193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Phytochemicals are important chemical compounds in pharmaceutical chemistry. These natural compounds have interesting biological activities, including anticancer, as well as many other functions. EGFR (epidermal growth factor receptor) tyrosine kinase inhibition is emerging as one of the accepted methods in the treatment of cancer. On the other hand, computer-aided drug design has become an increasingly important field of study due to its many important advantages such as efficient use of time and other resources. In this study, fourteen phytochemicals which have triterpenoid structure and have recently entered the literature were investigated computationally for their potential as EGFR tyrosine kinase inhibitors. In the study, DFT (density functional theory) calculations, molecular docking, molecular dynamics simulations, binding free energy calculations with the use of MM-PBSA (molecular mechanics Poisson-Boltzmann Surface Area) method, and ADMET predictions were performed. The obtained results were compared to the results obtained for reference drug Gefitinib. Results showed that the investigated natural compounds are promising structures for EGFR tyrosine kinase inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taner Erdogan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Fatma Oguz Erdogan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
3
|
Gautam S, Marwaha D, Singh N, Rai N, Sharma M, Tiwari P, Urandur S, Shukla RP, Banala VT, Mishra PR. Self-Assembled Redox-Sensitive Polymeric Nanostructures Facilitate the Intracellular Delivery of Paclitaxel for Improved Breast Cancer Therapy. Mol Pharm 2023; 20:1914-1932. [PMID: 36848489 DOI: 10.1021/acs.molpharmaceut.2c00673] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A two-tier approach has been proposed for targeted and synergistic combination therapy against metastatic breast cancer. First, it comprises the development of a paclitaxel (PX)-loaded redox-sensitive self-assembled micellar system using betulinic acid-disulfide-d-α-tocopheryl poly(ethylene glycol) succinate (BA-Cys-T) through carbonyl diimidazole (CDI) coupling chemistry. Second, hyaluronic acid is anchored to TPGS (HA-Cys-T) chemically through a cystamine spacer to achieve CD44 receptor-mediated targeting. We have established that there is significant synergy between PX and BA with a combination index of 0.27 at a molar ratio of 1:5. An integrated system comprising both BA-Cys-T and HA-Cys-T (PX/BA-Cys-T-HA) exhibited significantly higher uptake than PX/BA-Cys-T, indicating preferential CD44-mediated uptake along with the rapid release of drugs in response to higher glutathione concentrations. Significantly higher apoptosis (42.89%) was observed with PX/BA-Cys-T-HA than those with BA-Cys-T (12.78%) and PX/BA-Cys-T (33.38%). In addition, PX/BA-Cys-T-HA showed remarkable enhancement in the cell cycle arrest, improved depolarization of the mitochondrial membrane potential, and induced excessive generation of ROS when tested in the MDA-MB-231 cell line. An in vivo administration of targeted micelles showed improved pharmacokinetic parameters and significant tumor growth inhibition in 4T1-induced tumor-bearing BALB/c mice. Overall, the study indicates a potential role of PX/BA-Cys-T-HA in achieving both temporal and spatial targeting against metastatic breast cancer.
Collapse
Affiliation(s)
- Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
4
|
Zhang F, Qiu B, Ji Y, Zhang H, Song P, Sun N, Zhao L, Lv F, Yin L, Gao Y, Xue Q, Gao S, He J. Knockdown of GSG2 inhibits the development and progression of non-small cell lung cancer in vitro and in vivo. Cell Cycle 2023; 22:153-164. [PMID: 35972887 PMCID: PMC9817127 DOI: 10.1080/15384101.2022.2110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Lung cancer has been recognized as the most common malignant neoplasm of the respiratory system with extremely high morbidity, among which non-small cell lung cancer (NSCLC) accounts for the majority. Many published literatures have revealed the roles of GSG2 in the progression of ovarian cancer, bladder cancer and breast cancer. However, there were no reports on the relationship between GSG2 and NSCLC. Herein, GSG2 was identified as a potential tumor promoter in NSCLC development, whose abundant expression was observed in NSCLC tissues compared with adjacent nonmalignant tissues and statistically correlated with more advanced tumor stage, more malignant grade and higher risk of lymphatic metastasis. Subsequent in vitro loss-of-function experiments indicated that GSG2 depletion could arrest cell cycle and suppress cell proliferation and migration while enhancing cell apoptosis. At the same time, the suppressive effects of GSG2 depletion on NSCLC development were verified by in vivo experiments. In conclusion, the current study identified GSG2 as a tumor promoter in development and progression of NSCLC, which could work as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Qiu
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ji
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Zhao
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Lv
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixia Yin
- Department of central disease control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of thoracic surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Farooqi AA, Turgambayeva A, Tashenova G, Tulebayeva A, Bazarbayeva A, Kapanova G, Abzaliyeva S. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010067. [PMID: 36615262 PMCID: PMC9822120 DOI: 10.3390/molecules28010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
The pursual of novel anticancer molecules from natural sources has gained worthwhile appreciation, and a significant fraction of conceptual knowledge has revolutionized our understanding about heterogeneous nature of cancer. Betulinic acid has fascinated interdisciplinary researchers due to its tremendous pharmacological properties. Ground-breaking discoveries have unraveled previously unprecedented empirical proof-of-concept about momentous chemopreventive role of betulinic acid against carcinogenesis and metastasis. Deregulation of cell signaling pathways has been reported to play a linchpin role in cancer progression and colonization of metastatically competent cancer cells to the distant organs for the development of secondary tumors. Importantly, betulinic acid has demonstrated unique properties to mechanistically modulate oncogenic transduction cascades. In this mini-review, we have attempted to provide a sophisticated compendium of regulatory role of betulinic acid in cancer chemoprevention. We have partitioned this multi-component review into different sections in which we summarized landmark research-works which highlighted betulinic acid mediated regulation of JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and ubiquitination pathways in the inhibition of cancer. In parallel, betulinic acid mediated regulation of signaling cascades and non-coding RNAs will be critically analyzed in cell culture and animal model studies. Better comprehension of the pharmaceutical features of betulinic acid and mapping of the existing knowledge gaps will be valuable in the translatability of preclinical studies into rationally designed clinical trials.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
- Correspondence:
| | - Assiya Turgambayeva
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Tulebayeva
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Bazarbayeva
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Symbat Abzaliyeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| |
Collapse
|
6
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
7
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
8
|
Additive Interactions between Betulinic Acid and Two Taxanes in In Vitro Tests against Four Human Malignant Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23179641. [PMID: 36077036 PMCID: PMC9456196 DOI: 10.3390/ijms23179641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/02/2023] Open
Abstract
The incidence of melanoma is steadily increasing worldwide. Melanoma is the most lethal skin cancer, and new therapeutic methods are being sought. Our research aimed to investigate the cytotoxic and antiproliferative effects of betulinic acid in vitro, used alone and in combination with taxanes (paclitaxel, docetaxel) in four melanoma cell lines. Isobolographic analysis allowed us to assess the interactions between these compounds. Betulinic acid had no cytotoxic effect on normal human keratinocyte HaCaT cells; the amount of LDH released by them was significantly lower compared to melanoma cell lines. The present study shows that betulinic acid significantly inhibits the growth of melanoma cell lines in vitro. The IC50 values of betulinic acid ranged from 2.21 µM to 15.94 µM against the four melanoma lines. Co-treatment of betulinic acid with paclitaxel or docetaxel generated desirable drug–drug interactions, such as an additive and additive with a tendency to synergy interactions.
Collapse
|
9
|
Betulinic acid exerts antitumor effects on acute promyelocytic leukemia cells possibly via hTERT downregulation. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yueh PF, Lee YH, Chiang IT, Chen WT, Lan KL, Chen CH, Hsu FT. Suppression of EGFR/PKC-δ/NF-κB Signaling Associated With Imipramine-Inhibited Progression of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:735183. [PMID: 34765548 PMCID: PMC8576332 DOI: 10.3389/fonc.2021.735183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Anti-depressants have been reported to own anti-tumor potential types of cancers; however, the role of imipramine in non-small cell lung cancer (NSCLC) has not been elucidated. Epidermal growth factor receptor (EGFR) was known to be one of the key regulators that control NSCLC progression. Whether EGFR would be the target of imipramine for suppressing tumor signaling transduction and results in anti-tumor potential is remaining unclear. Methods We used CL-1-5-F4 cells and animal models to identify the underlying mechanism and therapeutic efficacy of imipramine. Cytotoxicity, apoptosis, invasion/migration, DNA damage, nuclear translocation of NF-κB, activation of NF-κB, phosphorylation of EGFR/PKC-δ/NF-κB was assayed by MTT, flow cytometry, transwell, wound healing assay, comet assay, immunofluorescence staining, NF-κB reporter gene assay and Western blotting, respectively. Tumor growth was validated by CL-1-5-F4/NF-κB-luc2 bearing animal model. Results Imipramine effectively induces apoptosis of NSCLC cells via both intrinsic and extrinsic apoptosis signaling. DNA damage was increased, while, invasion and migration potential of NSCLC cells was suppressed by imipramine. The phosphorylation of EGFR/PKC-δ/NF-κB and their downstream proteins were all decreased by imipramine. Similar tumor growth inhibition was found in imipramine with standard therapy erlotinib (EGFR inhibitor). Non-obvious body weight loss and liver pathology change were found in imipramine treatment mice. Conclusion Imipramine-triggered anti-NSCLC effects in both in vitro and in vivo model are at least partially attributed to its suppression of EGFR/PKC-δ/NF-κB pathway.
Collapse
Affiliation(s)
- Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hao Lee
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Psychiatry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Chen
- Surgical Department of Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
12
|
Zang L, Xu H, Huang C, Wang C, Wang R, Chen Y, Wang L, Wang H. A link between chemical structure and biological activity in triterpenoids. Recent Pat Anticancer Drug Discov 2021; 17:145-161. [PMID: 33982656 DOI: 10.2174/1574892816666210512031635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plants with triterpenoid compounds in nature have various biological activities and are reported in many scientific works of literature. Triterpenoids are compounds that draw the attention of scientists because of their wide source, wide variety, high medicinal value, and anti-tumor properties. However, a lack of approach to understand their chemical structures has limited the fundamental comprehension of these compounds in cancer cell therapy. OBJECTIVE To seek anti-cancer activity of the structures of triterpenoid compounds and their derivatives, we summarized a number of plants and their derivatives that are a source of potential novel therapeutic anti-cancer agents. METHODS This work focuses on relevant 1036 patents and references that detail the structure of organic compounds and derivatives for the treatment of tumors. RESULT Compared to tetracyclic triterpenoid, pentacyclic triterpenoid has contributed more to improve the autophagic signaling pathways of cancer cells. CONCLUSION The heterogenous skeleton structure of triterpenoids impaired the programmed cell death signaling pathway in various cancers.
Collapse
Affiliation(s)
- Li Zang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hao Xu
- College of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chao Huang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Cunqin Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Rongbin Wang
- Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241000, China
| | - Ying Chen
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Lei Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hongting Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
13
|
Li W, Zihan X, Yizhe W, Yanyang L, Zhixi L, Xi Y. Trilobatin Induces Apoptosis and Attenuates Stemness Phenotype of Acquired Gefitinib Resistant Lung Cancer Cells via Suppression of NF-κB Pathway. Nutr Cancer 2021; 74:735-746. [PMID: 33860693 DOI: 10.1080/01635581.2021.1912368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trilobatin is a common type of flavonoids compounds derived from Lithocarpus polystachyus Rehd leaves. Previous report suggests that trilobatin was potentially involved in pro-and anticancer, antioxidative and anti-hyperglycemic activities. Here, we investigated the anticancer efficiency of trilobatin on gefitinib resistant lung cancer cells. In this study, MTT assays, EdU incorporation assays, DAPI staining, tumor sphere formation assays, immunofluorescent staining and Western blot analysis were performed to explore the functional role of trilobatin on gefitinib resistant lung cancer cells. The results showed that trilobatin inhibits proliferation of gefitinib resistant lung cancer cells. In addition, the proportions of apoptotic cells were increased along with down-regulated expression levels of Bcl-2 and mitochondrial Cytochrome C while up-regulated Bax, Cleaved Caspase-3, -9, and cytosolic Cytochrome C expression. Moreover, trilobatin decreased tumor sphere formation and expression levels of multiple stemness markers (ALDH1, CD133, Nanog, and ABCG2) in gefitinib resistant lung cancer cells. Furthermore, investigation of the mechanism indicated that trilobatin suppressed activity of NF-κB via decreasing constitutive phosphorylation of NF-κB p65 and IκB-α in gefitinib resistant lung cancer cells. All these results indicate that trilobatin induces apoptosis and attenuates stemness phenotype of gefitinib resistant lung cancer cells, involved with, or partly, the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Wang Li
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Zihan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Yizhe
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liu Yanyang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Zhixi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Xi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential. Molecules 2021; 26:molecules26051381. [PMID: 33806566 PMCID: PMC7961550 DOI: 10.3390/molecules26051381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.
Collapse
|
15
|
Uncovering the Anti-Lung-Cancer Mechanisms of the Herbal Drug FDY2004 by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6644018. [PMID: 33628308 PMCID: PMC7886515 DOI: 10.1155/2021/6644018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
With growing evidence on the therapeutic efficacy and safety of herbal drugs, there has been a substantial increase in their application in the lung cancer treatment. Meanwhile, their action mechanisms at the system level have not been comprehensively uncovered. To this end, we employed a network pharmacology methodology to elucidate the systematic action mechanisms of FDY2004, an anticancer herbal drug composed of Moutan Radicis Cortex, Persicae Semen, and Rhei Radix et Rhizoma, in lung cancer treatment. By evaluating the pharmacokinetic properties of the chemical compounds present in FDY2004 using herbal medicine-associated databases, we identified its 29 active chemical components interacting with 141 lung cancer-associated therapeutic targets in humans. The functional enrichment analysis of the lung cancer-related targets of FDY2004 revealed the enriched Gene Ontology terms, involving the regulation of cell proliferation and growth, cell survival and death, and oxidative stress responses. Moreover, we identified key FDY2004-targeted oncogenic and tumor-suppressive pathways associated with lung cancer, including the phosphatidylinositol 3-kinase-Akt, mitogen-activated protein kinase, tumor necrosis factor, Ras, focal adhesion, and hypoxia-inducible factor-1 signaling pathways. Overall, our study provides novel evidence and basis for research on the comprehensive anticancer mechanisms of herbal medicines in lung cancer treatment.
Collapse
|
16
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
17
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|